SNOQUALMIE RIVER NPDES PERMITTED DISCHARGERS JULY - SEPTEMBER 1989 INSPECTIONS

by Marc Heffner

Washington State Department of Ecology
Environmental Investigations and Laboratory Services Program
Compliance Monitoring Section
Olympia, Washington 98504

Water Body Nos. WA-07-1060, WA-07-1100, WA-07-1110, WA-07-1130 (Segment No. 03-07-13)

May 1991

ABSTRACT

In support of Ecology's Snoqualmie River Low Flow Water Quality Assessment project (Joy, in prep), data was collected from the four NPDES permitted discharges in the study area. The four included three municipal dischargers (North Bend, Snoqualmie, and Duvall) and one industrial discharger (the Weyerhaeuser Snoqualmie Log Pond). Four sampling visits, including one Class II Inspection at each of the municipal dischargers, were made at each discharger between late July and late September 1989. The three municipal dischargers had difficulty meeting all NPDES permit limits in varying degrees. The industrial discharge was small and met permit limits.

INTRODUCTION

The Ecology Surface Water Investigations Section (SWIS) conducted a major water quality assessment project on the Snoqualmie River (Joy, in prep). In support of the assessment, the Ecology Compliance Monitoring Section (CMS) collected discharge data from the four NPDES permitted discharges in the study area. The sources include three continuously discharging municipal wastewater treatment plants: North Bend - NPDES Permit No. WA-002935-1; Snoqualmie - NPDES Permit No. WA-002240-3; and Duvall - NPDES Permit No. WA 002951-3(M); and one intermittent industrial discharge - the Weyerhaeuser (Weyco) Snoqualmie Log Pond - NPDES Permit No. WA-000173-2(I).

The project was conducted during the July-September 1989 low flow period. Four sampling visits were made to each discharger in conjunction with the river assessment sampling. Sampling dates were July 25-26, August 15-16, September 5-6, and September 26-27, 1989. Inspection objectives at the NPDES permitted facilities were:

- 1. Provide discharge data to support the four river assessment sampling efforts.
- 2. Do one Class II inspection at each of the municipal dischargers. Class II inspection objectives included:
 - a. Assess plant compliance with NPDES permit limits.
 - b. Review lab procedures to determine conformance with standard techniques. Samples were split with the permittee to determine the comparability of Ecology laboratory analysis and permittee laboratory analysis.
 - c. Characterize toxicity with influent and effluent priority pollutant scans and effluent bioassays.
 - d. Characterize sludge with a priority pollutant scan.

Conducting the inspections were Keith Seiders and Marc Heffner of the Ecology CMS. The operators provided assistance at the wastewater treatment plants (STPs); Doug Repp at North Bend, Dean Collins at Snoqualmie, and Dean Castinelli and John Light at Duvall.

PROCEDURES

Class II Inspection Monitoring

One Class II inspection was conducted at each municipal discharger; at the North Bend STP on July 25-26, at the Duvall STP on August 15-16, and at the Snoqualmie STP on September 5-6.

Ecology sampling included grab and composite samples. Ecology Isco priority pollutant composite samplers were set up to collect influent and effluent samples. Approximately 350 mLs of sample were collected every 30 minutes for 24 hours. The compositors were iced to cool samples immediately upon collection. The STP operator collected concurrent influent and effluent composite samples with the plant samplers. Also, Ecology grab composite samples, consisting of three subsamples, were collected for bioassays.

Ecology quality assurance included priority pollutant cleaning the composite samplers prior to the inspection and collection of transfer blanks on site for priority pollutant analysis (Table 1). Replicate samples were also collected during the inspections for analysis by the Ecology laboratory. Replicate samples for most parameters were collected by filling a large container, thoroughly mixing, then pouring subsamples in the field for submission to the laboratory for analysis. Fecal coliform replicates were collected by taking two samples in rapid succession.

All composite samples were split for analysis by the Ecology and STP laboratories. Samples collected, sampling times, and parameters analyzed are summarized in tables included in the results and discussion portion of the report.

Bioassay samples were placed on ice and shipped overnight delivery to ERCE Bioassay Laboratory. Samples for analysis by Ecology were placed on ice and shipped to the Ecology Manchester Laboratory. Analytical methods and laboratories doing the analysis are summarized in Table 2.

Ecology instantaneous flow measurements for comparison with the in-plant flowmeter were made during the inspection and selected other plant visits. Also, sludge depths were measured several times in the clarifiers and chlorine contact basins using a sludge judge core sampler.

Non-Class II Inspection Monitoring

Limited Ecology sampling was conducted during survey weeks at the municipal dischargers not scheduled for a Class II inspection. Effluent grab and composite samples were collected. At each facility an Ecology Isco composite sampler collected approximately 200 mLs of sample every 30 minutes for 24 hours. Prior to sample collection the sampler was cleaned for metals sampling (Table 1). Samples collected, sampling times, and parameters analyzed are summarized in tables included in the results and discussion portion of the report.

Weyco Log Pond grab samples and a grab composite sample were collected during each survey week. The grab composite consisted of three samples of equal volume. Samples collected, sampling times, and parameters analyzed are summarized in a table included in the results and discussion portion of the report.

Samples for analysis by Ecology were placed on ice and shipped to the Ecology Manchester Laboratory. Analytical methods and laboratories doing the analysis are summarized in Table 2.

PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. Wash with laboratory detergent.
- 2. Rinse several times with tap water.
- 3. Rinse with 10% HNO₃ solution.
- 4. Rinse three (3) times with distilled/deionized water.
- 5. Rinse with high purity methylene chloride.
- 6. Rinse with high purity acetone.
- 7. Allow to dry and seal with aluminum foil.

METALS SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. Wash with laboratory detergent.
- 2. Rinse several times with tap water.
- 3. Rinse with 10% HNO₃ solution.
- 4. Rinse three (3) times with distilled/deionized water.
- 5. Allow to dry and seal with aluminum foil.

FIELD TRANSFER BLANK PROCEDURE

- 1. Pour organic free water directly into appropriate bottles for parameters to be analyzed from grab samples (VOA).
- 2. Run approximately 1L of organic-free water through a compositor and discard.
- 3. Run approximately 6L of organic-free water through the same compositor and put the water into appropriate bottles for parameters to be analyzed from composite samples (BNA, Pesticide/PCB, and metals).

Table 2. Ecology Analytical Methods and Test Laboratories - SRD, 1989.

	Method Used for Ecology Analysis (Ecology, 1988&89)	Laboratory Performing Analysis
Laboratory Analyses	EDA #100 1	Г 1
Turbidity	EPA #180.1	Ecology
Conductivity	EPA #120.1	Ecology
Alkalinity	EPA #310.1	Ecology
Hardness	EPA #130.2	Ecology
Chloride	EPA #300.0	Ecology
NH ₃ -N	EPA #350.1	AR
$NO_3 + NO_2 - N$	EPA #353.2	AR
Total-P	EPA #365.1	AR
Ortho-P	EPA #365.1	AR
TS	EPA #160.3	Ecology
TNVS	EPA #160.4	Ecology
TSS	EPA #160.2	Ecology
TNVSS	EPA #160.4	Ecology
COD	EPA #410.1	Ecology
BOD,	EPA #405.1	AR
Inhib. BOD,	EPA #405	AR
Fecal Coliform (MF)	APHA, 1985: #909C	Ecology
TOC (sed/sludge)	Tetra Tech, 1986	ARI
% Solids	EPA #160.3	ARI
Cyanide	EPA #335.3	ARI
VOA (water)	EPA #624	PNEL
VOA (sed/sludge)	EPA #8240	PNEL
BNA (water)	EPA #625	PNEL
BNA (sed/sludge)	EPA #8270	PNEL
Pest/PCB (water)	EPA #608	PNEL
Pest/PCB (sed/sludge)	EPA #8080	PNEL
pp metals	EPA #200	Ecology
Trout	EPA, 1985a	ERCE
Fathead Minnow	EPA, 1985a	ERCE
Ceriodaphnia	EPA, 1985b	ERCE
Cerwaapiinia	Li A, 17050	LICE
Field Analyses		
pH	APHA, 1985: #423	Ecology
Conductivity	APHA, 1985: #205	Ecology
Temperature	APHA, 1985: #212	Ecology
Chlorine Residual	APHA, 1985: #408E	Ecology

AR - Aquatic Research
ARI - Analytical Resources Inc.
ERCE - ERCE Bioassay Laboratory
PNEL - Pacific Northwest Environmental Laboratory

SETTING

The North Bend STP is an oxidation ditch type secondary system with a design monthly average flow of 0.4 MGD (Figure 1). The oxidation ditch and both secondary clarifiers were operating during all visits. The chlorine contact chambers were operated on an alternating basis; one in service and one being cleaned. Flow measurement at the plant included an in-line influent flowmeter and an effluent Parshall flume. The effluent meter flow totalizer was not functioning during the inspections.

Waste activated sludge is sent to an aerobic digester and then to drying beds. During the inspection period, the aerobic digester was off line for modification to allow variable level supernatant draw-off and sludge was not wasted. Historically final sludge disposal had been at the city dump, but since the dump was closed approximately one year before the inspection, there had been no final disposal. Dried sludge, ready for disposal, had been piled in the drying bed pending a decision on final disposal.

Samples collected, sampling times, and parameters analyzed are summarized in Table 3. Sample locations are illustrated in Figure 1.

RESULTS AND DISCUSSION

Flow Measurement

The influent in-line flowmeter was used for flow measurement during the inspections (Table 4). Ecology instantaneous measurements at the effluent six-inch Parshall flume corresponded poorly with the influent plant meter instantaneous flow measurements. The plant operator did further comparisons between the influent and effluent measurements and found the influent meter measurements were routinely low. The influent flow measurements were estimated to be approximately 60 percent of the actual flow; thus, inspection influent flow measurements were appropriately adjusted for use in this report. The operator began consistently using the effluent meter for NPDES permit reporting in approximately June 1990. Flows reported prior to June 1990 should be inspected carefully to ascertain the measurement point and to adjust the flow as necessary.

Conventional Parameters/NPDES Permit Compliance

Plant performance during the first two visits was excellent, but declined during the last two visits (Table 5). Effluent NH₃-N concentrations were less than 1 mg/L during all the visits suggesting biological treatment was good throughout the study period. During the last two inspections, solids carryover in the secondary clarifiers was observed. Effluent TSS concentrations were 60 mg/L on September 5-6 and 160 mg/L on September 26-27. Sludge depth measurements made using a sludge judge found some clearwater in the secondary clarifiers during the September 26 - 0830 measurement (four - five feet) but no clearwater in the September 26 - 1330 measurement (Table 6). The operator had previously observed rising sludge blankets in the afternoon. Lack of sludge wasting likely contributed to the problem.

Results comparison with NPDES permit effluent limits showed compliance during the July 24-25 and August 15-16 visits (Table 7). The September 5-6 visit found BOD₅ exceeding the monthly

average concentration limit and TSS exceeding the weekly and monthly average concentration and monthly average loading limits. The September 26-27 visit found BOD₅ and TSS exceeding monthly and weekly average limits with the exception of the BOD₅ monthly average loading limit. Also, one of the fecal coliform samples collected on September 26 greatly exceeded the permit limits; sample concentration - 120000/100mL, weekly average limit - 400/100mL.

Priority Pollutants - Water Samples

Organics concentrations in the effluent sample were low (Table 8). Dibromochloromethane was the organic found in the highest concentration (6 μ g/L). Alpha-Chlordane (estimated concentration 0.092 μ g/L), which exceeded the chronic freshwater toxicity criteria, was the only organic found in the effluent in excess of freshwater toxicity criteria (EPA, 1986b). Several organics were found in the influent sample. Acetone (100-200 μ g/L), 4-Methylphenol (44 μ g/L), and total phthalate esters (38 μ g/L-estimated) were found in the highest concentrations. Most compounds found in the influent were removed from the liquid stream during the treatment process. A complete list of priority pollutant scan target compounds and detection limits is included in Appendix A.

Compounds tentatively identified in the scan are noted in Appendix B. More compounds and higher concentrations were noted in the influent than in the effluent.

Several metals were detected (Table 8). Metals exceeding chronic toxicity criteria in one or more effluent sample include lead and mercury. Metals exceeding chronic and acute toxicity criteria in one or more effluent sample include copper, silver, and zinc.

Bioassays - Water

Effluent toxicity was minimal in the bioassays. All LC₅₀s, NOECs, and LOECs calculated were greater than 100 percent effluent (Table 9).

Sludge

Approximately twenty organic priority pollutants were detected in the sludge sample (Table 8). Most of the compounds detected were polynuclear aromatic hydrocarbons (PAHs). Concentrations of most of these compounds were estimated below the reliable quantification limit. The PAH compounds were not detected in the water samples. A complete list of priority pollutant scan target compounds and detection limits is included in Appendix C. Compounds tentatively identified in the scan are noted in Appendix D.

North Bend sludge metals concentrations fell below the geometric mean of samples collected during previous Class II Inspections at activated sludge plants in Washington (Table 8; Hallinan, 1988).

Laboratory Procedure Review/Sample Splits

Laboratory and sampling procedures at the plant were generally acceptable. Minor recommendations are included in the "Laboratory Procedure Review Sheet" included in Appendix E.

The split samples results comparison was acceptable (Table 10). The STP and Ecology laboratory results for the Ecology influent sample do not compare as closely as desired, but the other comparisons all suggest a good correlation between the two laboratories.

RECOMMENDATIONS AND CONCLUSIONS

Flow Measurement

The influent flowmeter was inaccurate; registering flow at approximately 60 percent of the actual rate. The effluent flowmeter was repaired after the inspections and should be maintained and used.

Conventional Parameters/NPDES Permit Compliance

The plant was operating well during the first two visits, but performance then deteriorated. Effluent BOD₅ and TSS were not within all limits during the second two visits. Also, one sample with a high fecal coliform count was collected on September 25.

Priority Pollutants - Water Samples

Effluent organic concentrations were low. Effluent concentrations of alpha-Chlordane and several metals exceeded freshwater toxicity criteria.

Bioassays - Water

Effluent toxicity was minimal.

Sludge

Approximately twenty organics were detected; most below reliable quantification limits. Many of the organics were PAHs. Metals concentrations fell below statewide historical averages.

Laboratory Procedure Review/Sample Splits

Analytical and sampling procedures were acceptable. Recommendations for minor changes are included in Appendix E.

Figure 1. North Bend STP Flow Scheme - SRD, 1989.

Table 3. North Bend STP Sample Collection - SRD, 1989.

: -80 [48]													
Numbers .	308080	308085	308086		308081	308082	308087	308088	308089		308083	308084	
Sample:	Blank	Influent	Influent	Influent	ECO-Inf	STP-Inf	Effluent	Effluent	Ef- Dup	Effluent	ECO- Ef	STP-Ef	
Date:	77.25	7125	7/25	7/26	7/25-26	7/25-26	7/25	7/25	7/25	7/26	7725-26	7125-26	
Time:	0835	0945	1420	0910	0915-0915	0915-0915	0830	1430	1430	0850	0915-0915	0915-0915	
Type:		Grab	Grab	Grab	Composite	Composite	Grab	Grab	Grab	Grab	Composite	Composite	
Held Analyses													
•		шì	田	田	山	ជ	丑	щ		ы	叫	ы	
Temperature		ш	四	щ	山	田	ш	叫		田	ш	ш	
Conductivity		ш	ш	ы	ш	П	ш	田		叫	щ	ш	
Chlorine Residual													
Total							ш	щ		щ			
Free							田	田		ш			
Laboratory Analyses													
Turbidity					щ	山	山	ជា	ш		ш	ш	
Conductivity					щ	ш	ш	ш	щ		щ	ш	
Alkalinity					田	ш	щ	ш	ш		田	ш	
Hardness					Ħ	ш	П	щ	щ		ш	ш	
Chloride					ш	ш	ш	ш	ш		田	ш	
					ш						田		
					ш	ш					ш	ш	
					ш	щ					띠	리	
					ES	ES	山	ш	田		ES	ES	
					叫	ш					ല	山,	
					ES	ES					ES	ES	
Inhib. BOD,					щ						山		
					ш	ш	E	ш	ш		Ħ	田	
												!	
					叫	ш	日	山	田		ш	m)	
NO, + NO ₂ -N					叫	叫	叫	пì	日		ш	n)	
					ш	ш	田	m	E		ш	11	
					ш	ш	ជា	щ	山		щ	ш	
% Solids									!				
Fecal Coliform							田	띠	ᆈ				
pp metals	щ				пì						日		
	ш				田						ш		
	ш	田	щ				н	山					
Pest/PCB	ш				ш						н		
											± L		
Fathead Minnow											т		
Ceriodaphnia dubia											40		

<sup>Ecology Laboratory Analysis
S - Sewage Treatment Plant Laboratory Analysis
Bioassay samples were hand composites made by mixing equal volumes of the three 7/25-26 effluent grab samples.</sup>

Table 3. (Continued) - SRD, 1989.

	398193	Effluent 9/26-27 0830-0830	Composite		m) I	πļ	괴				μ	ш	ш	щ	щ		щ	ш	ъì I	a) li	ų	ļ	ı	щ	Щ	щ	щ			щ						
		Effluent 9/27 0810	Grab		ЩΙ	цı	r)	щ	Ħ																											
9/26-27	398189	Ef-Dup 9/26 1320	Grab																										щ							
	398187	Effluent 9/26 1320	Grab		шı	ijΙ	리	щ	ш																				щ							
	398186	Effluent 9/26 0830	Grab	Olimbar Sale Market	шı	r) L	ı)	ш	щ		*******		~~~									*****		hiterational	and the same				щ							-
	368247	Effluent 9/5-6 0830-0830	Composite		m) l	ŋμ	บ				ţĽ	ш	ш	3	Ξ		Щ	m) :	шı	n) la	a a	μ	1	田	ш	ш	Э			Э						
9/2-6		Effluent 9/6 0810	Grab		щ	ijĻ	디	ш	щ																											
/6	368251	Effluent 9/5 1315	Grab		щ	ijμ	ņ	щ	ш																			f	щ							
	368250	Effluent 9/5 0815	Grab	!	យដ	ijμ	ŋ	щ	ш																			ŀ	щ							
	338426	Sludge 8/16 0845	Grab																				Įχ				1	ı		ш	ш	цщ)			
	338416	Effluent 8/15-16 0830-0830	Composite	1	m) i	υµ	ū				μ	ш	ш	ы	ш		щ	m) I	ıμι	n u	į	jr.)	臣	Ξ	щ	щ			щ						
8/15-16		Effluent 8/16 0830	Grab	1	щt	ijμ	ų	ш	щ																											
/8	338420	Effluent 8/15 1350	Grab	ı	n) t	n) þ	q	ш	丑																			ţ	n N							
	338419	Effluent 8/15 0815	Grab	i	m t	ជ្	ŭ	щ	Э																			ţ	ŋ							
	Lab Log-:	Sample: Date: Time:	Type:	5 0			fual			nalyses																			=					W(dubia	
				Field Analyses	PH T	Conductivity	Chlorine Residual	Total	Free	Laboratory Analyses	Turbidity	Conductivity	Alkalinity	Hardness	Chloride	Cyanide	TS	TNVS	TNIVES	BOD.	Inhib. BOD.	COD	TOC	NH3-N	NO,+NO,-N	Total-P	Ortho-P	Foot Cattern	recal Colliorm	pp metals	NO A	Pest/PCB	Trout	Fathead Minnow	Ceriodaphnia dubia	

<sup>Ecology Laboratory Analysis
S - Sewage Treatment Plant Laboratory Analysis
• Bioassay samples were hand composites made by mixing equal volumes of the three 7/25-26 effluent grab samples.</sup>

Table 4. North Bend STP Flow Measurements - SRD, 1989.

Influer	ıt Flow	meter Mo	Influent Flowmeter Measurements		Influent Flowmeter Measurements	Measurement	10	
Month	Date Month Day	_ Time	Totalizer reading	Flow for time increment (MGD)	Date Month Day Time	Totalizer e reading	Flow for time increment (MGD)	İ
7/2	7/25-26				9/2-6			
7	25	845	546755	60.	9 5 830	552867	0 107	
7	25	1430	546801	0.192	9 5 1315	552906	0.130	
7	26	815	546887	0.116	08 9 6	553010	0.130	
Ay	erage f justed	Average flowmeter flow = Adjusted average flow =	flow = 0.2 $low = 0.2$	0.135 0.23 MGD +	Average flowmeter flow = 0.143 Adjusted average flow = 0.24 MGD +	neter flow = ge flow = 0.	0.143 24 MGD +	ļ
8-1	8-15/16				9/26-27			
∞	15	810	549816	3010	9 26 820	999555	0 130	
∞	15	1350	549862	0.193	9 27 925	555811	0.139	
∞	16	855	549963	0.127	Average flowmeter flow =	neter flow =	0.139	
Av Ad	erage 1 justed	Average flowmeter flow = Adjusted average flow = (flow = 0.2 $low = 0.2$	0.143 0.24 MGD +	Aujusica average 110w —		+ GDM 67:0	

+ based on Ecology instantaneous flow measurements and further checks by the operator, the influent flowmeter measurements were estimated to be approximately 60 percent of the actual flow.

Table 4. (Continued) - SRD, 1989.

	Plant Meter **	0.14	
GD)	Plant P Meter * M	0.25 0	
Instantaneous Flow Measurements (MGD)	Ecology *	0.28 0.29 0.25	at effluent 6 inch Parshall flume influent flowmeter
low Mea	Day Time	1045 1345 925	inch Par meter
neous Fl	Day	26 26 27	* at effluent 6 inch P** influent flowmeter
Instanta	Month	7 6 6	* at eff ** influ

Table 5. North Bend STP-Ecology Laboratory Results-SRD, 1989.

I ah I am Mumbare	309090	308084	30808		308081	308083	308087	308088	308089		308083	308084	
Lao Log Munocis.	Blank	Influent	Influent	Influent	FCO-Inf	STP-Inf	Effluent	Effluent	Ef- Dup	Effluent	ECO- Ef	STP-Ef	
Sample:	7/75	7/7	777	106	705.76	705.26	707	7775	301	7/26	7/25-26	7/25-26	
Time:	0835	0045	1420	0010	0915-0915	0915-0915	0630	1430	1430	0820	0915-0915	0915-0915	
Type:		Grab	Grab	Grab	Composite	Composite	Grab	Grab	Grab	Grab	Composite	Composite	
Field Analyses		7 6	11	7.3	7 6	7	7.7	7.7		7.1	7.3	7.4	
pn (5.0.)			17.0	0.71	, ,	12.7	18.1	10.7		18.7	6.7	13.1	
I emperature (C)		17.7	17.3	305	300	370	780	27.0		37.0	300	27.5	
Conductivity (umnos/cm)		064	* /1	393	350	3/0	007	C 14		0.14	8	2	
Chlorine Kesidual (mg/L)							ć	d		9			
Total							0.2	0.0		0.0			
rree							7.0	7.0		7.07			
Laboratory Analyses												,	
Turbidity (NTU)					62	52	2.0	1.9	2.0		1.7	1.8	
Conductivity (umhos/cm)					375	310	265	263	265		270	569	
Alkalinity (mg/L CaCO,)					130	128	74	22	23		73	F	
Hardness (mg/L CaCO ₁)					55	4	49	20	49		\$0	ጟ	
Chloride (mg/L)					21.2	21.5	22.2	23.8	23.1		23.2	21.4	
Cyanide $(\mu g/L)$					5 U						5 U		
TS (me/l.)					440	200					160	170	
TNVS (mg/L)					140	30					130	140	
TSS (mg/l)					150	170	o	9	,-		v	vc	
TNVSS (mg/L)					16	24	`	,	ì		4	• •	
BOD, (mº/L)					190 J	140 1					5 3	5 .	
Inhib. BOD, (mg/L)					160 J	! !					4 UI		
COD (mg/L)					414	\$09	21	18	19		18	16	
TOC (mg/gm dry-wt)													
NH,-N (mg/L)					15.8	13.2	0.52	0.17	0.24		69.0	0.19	
NO ₃ +NO ₂ -N (mg/L)					0.17	0.02 U	0.46	0.38	0.47		0.22	0.21	
Total-P (mg/L)					2.4	3.7	0.78	1.8	1.6		1.6	1.7	
Ortho-P (mg/L)					2.9 J	2.2 J	0.45 J	0.96 J	0.78 J		0.97 J	0.97 J	
% Solids								•					
recal Conform (#/100mL)	,						077	•	2		;		
Antimony (µg/L)	2.0 0				2.0 0						2.0 0		
Arsenic (µg/L)	1.0 U										7.4		
Beryllium (µg/L)	2.0 0										2.0 0		
Cadmium (µg/L)	5.0 U										5.0 U		
Chromum (µg/L)	5.0 U				5.0 U						5.0 U		
Copper (µg/L)	4.0 U				40.2						4.0 U		
Lead (µg/L)	1.0 U				5.4 B						5.7 B		
Mercury (µg/L)	0.06 U				0.17						0.06 U		
Nickel (µg/L)	20 U										20 U		
Selenium (µg/L)	2.0 U				2.0 U						2.0 U		
Silver (µg/L)	0.50 U				1.0								
Thallium $(\mu g/L)$	1.0 U				1.0 U						1.0 U		
7:20 ()	4 7 01												

Table 5. (Continued) - SRD, 1989.

	With the second		8/15-16				9/2-6					9/26-27		
Lab Log-: Numbers:	338419	338420		338416	338426	368250	368251		368247	398186	398187	398189		398193
Sample: Date:	Effluent 8/15	Effluent 8/15	Effluent 8/16	Effluent 8/15-16	RAS 8/16	Effluent 9/5	Effluent 9/5	Effluent 9/6	Effluent 9/5-6	Efflucat 9/26	EMuent 9/26	EP-Dup 9/26	Effluent 9/27	Effluent 9/26-27
Time: Type:	0815 Grab	1350 Grab	0830 Grab	0830-0830 Composite	0845 Grab	0815 Grab		0810 Grab	0830-0830 Composite	0830 Grab	1320 Grab	1320 Grab	0915 Grab	0830-0830 Composite
Field Analyses														
pH (S.U.)	6.8	6.7	7.0	7.3	non transcript de	7.1	7.0	7.3	7.3	7.4	8.9		7.4	7.7
Lemperature (*C) Conductivity (nmhos/cm)	301	17.8	17.2	5.0 300	even europe	16.9	17.9	16.5	3.9	16.0	16.7		15.8	4.0
Chlorine Residual (mg/L)	100	CTC	010	200		301	607	007		707	0/7		207	607
Total	9.0	0.5	0.5			0.3	0.3	0.5		0.5	0.3		0.5	
Laboratory Anglyses	V0.1	< 0.1	< 0.1			<0.1	0.1	< 0.1		< 0.1	< 0.1		< 0.1	
Turbidity (NTU)				4.					7					38
Conductivity (umhos/cm)				317					308					281
Alkalinity (mg/L CaCO ₃)				39	-				22					%
Hardness (mg/L CaCO,)				57					57					58
Chloride (mg/L)				25.4					25.8					23.9
Cyamide (µg/L) TS (mg/L)				240					2					400
TNVS (mg/L)				160					8 6					180
TSS (mg/L)				3	*******				8					991
TNVSS (mg/L)				1 U					10					4
BODs (mg/L) Inhih BOD. (mg/L)				4					35 J*					\$
COD (mg/L)				24										249
TOC (mg/gm dry-wt)					320**				•					ì
NH ₃ -N (mg/L)				0.92 J	-				0.21					99.0
NO ₃ +NO ₂ -N (mg/L)				8.5 J					1.2					0.29
ortho-P (mg/L)				5.4 7. 4					6.6 6.6					6.0 3.6
% Solids				?	0.34				?					C.7
Fecal Coliform (#/100mL)	∞	ę				23	26			14	12000	15000		
Antimony (µg/L)					0.9									3.0 U
Arsenic (µg/L)				5.7 R										1.0 UR
Seryillum (#g/L)					0.50 U									2.0 U
Chroming (48/L)				5.0 0	16				5.0 U					5.0 U
Copper (µg/L)					34 07.71				33 0					5.0 U
Lead (µg/L)				1.0 U	150				3.3 B					7.5 B
Mercury (µg/L)					8.7									0.38
Nickel (µg/L)					62									20 U
Selenium (µg/L)					6.0 3									2.0 U
Thallium (ug/L)				0.50 0	21.3				0.50 U					6.7
Zinc (µg/L)									0.10					1.0 U
														170

Table 5. (Continued) - SRD, 1989.

- possible toxic effect BOD₅ = 13J mg/L at dilution factor of 2.0: BOD₅ = 35J mg/L at dilution factor 10.0
- average of sample result (400 mg/gm dry wt) and duplicate analysis (240 mg/gm dry wt).
- indicates compound was analyzed for but not detected at the given detection limit. \supset
- indicates an estimated value.
- This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination. 8
- indicates compound was analyzed for but not detected at the given detection limit, and the internal standard on which detection limit quantification was based was outside acceptance limits. n
- R low spike recovery result may be biased low.
- indicates compound was analyzed for but not detected at the given detection limit, and the spike recovery was low so the actual detection limit may be higher. UR

Table 6. North Bend STP Sludge Depth Measurements - SRD, 1989.

Date	Time	Unit **	Tank Depth (ft)	Sludge Blanket Thickness (ft)	Poorly Settled Sludge Layer (ft)	Clear- water Depth (ft)
7/25	1420	Clarifier #1 Clarifier #2 Cl ₂ Contact Basin *	10.0 10.0 9.5	1.0 1.0 0.5	6.0 6.0	3.0 3.0 9.0
7/26	1030	Clarifier #1 Clarifier #2 Cl ₂ Contact Basin *	10.0 10.0 9.5	2.0 8.0 1.0		8.0 2.0 8.5
8/16	0855	Cl ₂ Contact Basin *				+
9/5	0815	Cl ₂ Contact Basin *				+
9/5	1320	Clarifier #1 Clarifier #2 Cl ₂ Contact Basin *	10.0 10.0 9.5	1.5 1.5 5.0	8.5 7.0	1.5 4.5 +
9/6	0830	Clarifier #1 Clarifier #2	10.0 10.0		5.0 6.0	5.0 4.0
9/26	1330	Clarifier #1 Clarifier #2 Cl ₂ Contact Basin *	10.0 10.0 9.5		10.0 ++ 10.0 ++ 9.5	

^{*} Cl_2 contact basin samples collected near outlet unless otherwise specified.

^{**} see Figure 1 for numbering system.

⁺ a layer of floating sludge was trapped behind the floating solids retention bar on the surface of the contact chamber. The maximum depth of floating solids observed was 3-4 inches on 9/5 at 1320.

⁺⁺ overflow weirs were partially plugged

Table 7. North Bend STP-Comparison of Inspection Results with NPDES Permit Limits-SRD, 1989.

Parameter *	NPDES Per Monthly Average	rmit Limits Weekly Average	7/25-26 Ecology Samples	7/25-26 STP Samples	8/15-16 Ecology Samples	9/5-6 Ecology Samples	9/26-27 Ecology Samples
BOD ₅ (mg/L) (lbs/D) (% removal)	30 100 85	45 150	5 J 10 97	5 J 10 96	4 J 8	35 J 70	64 123
TSS (mg/L) (lbs/D) (% removal)	30 100 85	45 150	6 12 96	6 12 96	3 6	60 120	160 307
Fecal coliform (#/100 mL)	200	400	220 3 U+ 3 +		8 3	23 26	14 12000 + 15000 +
pH (S.U.)		t be outside ge 6.0 - 9.0	7.3,7.2, 7.1		6.8,6.7, 7.0	7.1,7.0, 7.3	7.4,6.8, 7.4
Flow (MGD)			0.23	0.23	0.24	0.24	0.23

^{*} Ecology analytical results - composite samples for BOD₅ and TSS grab samples for pH and fecal coliforms.

⁺ duplicate analysis.

J estimated.

U less than.

Table 8. North Bend STP Priority Pollutants Detected and Toxicity Criteria Comparison - SRD, 1989.

Tra	ansfer Blank	North Ben	d Influent	Nort	th Bend Sludge			
Lab Log #: Type: Date:	308080 7/25	308085 Grab 7/25	308086 Grab 7/25		338427 Grab 8/16			
Time:	0835	0945	1420		0845		***************************************	
% Solids TOC (% dry wt basis)	:				** 32			
VOA Compounds	(μg/L)	(μg/ L)	$(\mu g/L)$	(μg/L)	(µg/Kg dry wt)			
Acetone	-	100	200	-	-			
Chloroform	-	2 J	2 J	-	•			
Bromodichloromethane	-	-	-	-	•			
Dibromochloromethane Bromoform	-	-	-	_	<u>-</u>			
Tetrachloroethene	-	5	7		- -			
Toluene	-	2 Ј	2 Ј	-	-			
Lab Log #:	308080	308081			338427			
Type:	-	ECO-Comp			Grab			
Date:	7/25	7/25-26		ļ	8/16			***************************************
BNA Compounds Phenol	(μg/ L)	(μg/L) 6 J		(μg/L) 3 J	(μg/Kg dry wt) 660 J			
1,4-Dichlorobenzene	-	2 J		-	-			
Benzyl Alcohol	-	9 j		-	-			
4-Methylphenol	-	44		-	-			
Benzoic Acid	-	15 J		-				
Dibenzofuran	-	-		2 J	390 J			
N-Nitrosodiphenylamine	-	-		96	25000			
Pentachlorophenol	-	-		3 J	880J			
Phthalate Esters Diethyl Phthalate	_	6 J			_			
Di-n-Butyl Phthalate	<u>-</u>	2 1		83 B	21000 B			
Butylbenxylphthalate	-	4 J		2 J	580 J			
Bis(2-Ethylhexyl)phthalate	-	25		91	23000			
Di-n-Octyl Phthalate LPAH ++	-	1 J		-	-			
Acenaphthene	-	-		11 5 J	2900 1200 J			
Fluorene Phenanthrene	-	_		10	2600			
Anthracene	-	_		4 J	910 J			
HPAH +++								
Fluoranthene	-	-		10	2400			
Pyrene	-	-		11	2800			
Benzo(a) Anthracene	-	-		3 J	890 J			
Chrysene	-	-		4 J 2 J	1000 J 640 J			
Benzo(b)Fluoranthene Benzo(k)Fluoranthene	-			2 1	500 J			
Benzo(a)Pyrene	-	_		2 J	510 J			
Pest/PCB Compounds								
gamma-BHC (Lindane) alpha-Chlordane	-	0.01 J		1.4 D	360 D			
Market and the second s	308080	308081			338426	٥٠.	tewide Class	n
Lab Log #: Type:	300000	ECO-Comp			338420 Grab		iewide Class. idge Data ***	
Date:	7/25	7/25-26			8/16	Geometric Mean		# Sampled
Metals	(μg/ L)	(μg/L)		(μg/L)	(mg/Kg dry wt)	(mg/Kg dry wt)		
Arsenic	-	3.8		24.8	7.3	<u>.</u>		
Cadmium	-	-		16	4.7	7.6	< 0.1-25	34
Chromium	-	40.2		34 1270	10 374	62 400	15-300 75-1700	34
Copper Lead		40.2 5.4 B		150	374 44	210	34-600	34 34
Mercury	-	1		8.7	2.6	210	J-1000	54
************	-	1 0.17						
	-	0.17		62	18	26	< 0.1-62	29
Nickel Selenium		-		62 6.0 J	18 1.8 J	26	< 0.1-62	29
Nickel	-	-		62	18	26 1200	< 0.1-62 165-3370	29 33

Table 8. (Continued) - SRD, 1989.

North Bent Effluent

Sample: Lab Log #: 308087 308088	
Lab Log #: Grab Grab Type: Grab Grab Date: 7/25 7/25 7/25 Acute Chronic # Solids TCO (# dry wt basis) VOA Compounds Acctore - 21 28900* 1240* Bromodichloromethane Dibromochloromethane Date: 308083 Type: ECO-Comp Date: 7/25-26 BNA Compounds (µg/L) Freshwater Toxicity Criteria (EPA, 1986b) Freshwater Toxicity Criteria (EPA, 1986b) Freshwater Toxicity Criteria (EPA, 1986b) Criteria (EPA, 1986b) Freshwater Toxicity Criteria (EPA, 1986b)	
Type:	
Date: 7/25 7/25 7/25	
Date: 7/25 7/25 Time: 0930 1430 Acute Chronic	
## Solids Time:	
# Solids TOC (# dry wt basis) VOA Compounds (ug/L) (ug/L) Actione	
TOC (
TOC (
VOA Compounds	
Acetone	
Chloroform	
Chloroform	
Bromodichloromethane 1 J	
Dibromochloromethane - 6	
Tetrachloroethene	
Tetrachloroethene Toluene 2 J - 17500* Lab Log #: 308083	
Toluene 2 J - 17500*	
Lab Log #: 308083 Criteria (EPA, 1986b) Type: ECO-Comp Date: 7/25-26 Acute Chronic	
Lab Log #: 308083 Type: ECO-Comp Date: 7/25-26 Acute Chronic	
Lab Log #: 308083 Type: ECO-Comp Date: 7/25-26 Acute Chronic	
Type: Date: 7/25-26	
Type: Date: 7/25-26	
Date 7/25-26	
BNA Compounds (μg/L) (μg/L) (μg/L) Phenol - 1,4-Dichlorobenzene - Benzyl Alcohol - 4-Methylphenol - Benzoic Acid - Dibenzofuran - N-Nitrosodiphenylamine - Pentachlorophenol - Phthalate Esters Diethyl Phthalate - Di-n-Butyl Phthalate - Butylbenxylphthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH ++ Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH +++	
Phenol - 1,4-Dichlorobenzene - Benzyl Alcohol - 4-Methylphenol - Benzoic Acid - Dibenzofuran - N-Nitrosodiphenylamine - Pentachlorophenol - Phthalate Esters - Diethyl Phthalate - Di-n-Butyl Phthalate - Bis(2-Ethylhexyl)phthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH + + - Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH + + + -	
Phenol	
1,4-Dichlorobenzene Benzyl Alcohol - 4-Methylphenol - Benzoic Acid - Dibenzofuran - N-Nitrosodiphenylamine - Pentachlorophenol - Phthalate Esters Diethyl Phthalate - Di-n-Butyl Phthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - Di-n-Octyl Phthalate - Di-n-Ottyl Phthalate - Di-n-Ottyl Phthalate - Di-n-Ottyl Phthalate - Di-n-Ottyl Phthalate - LPAH + + Acenaphthene - Fluorene - Phenanthrene - Anthracene - Anthracene - HPAH + + +	
Benzyl Alcohol 4-Methylphenol Benzoic Acid Dibenzofuran N-Nitrosodiphenylamine Pentachlorophenol Phthalate Esters Diethyl Phthalate Di-n-Butyl Phthalate Butylbenxylphthalate Bis(2-Ethylhexyl)phthalate Di-n-Octyl Phthalate Di-n-Octyl Phthalate Di-n-Octyl Phthalate LPAH ++ Acenaphthene Fluorene Phenanthrene Anthracene HPAH +++	
4-Methylphenol - Benzoic Acid - Dibenzofuran - N-Nitrosodiphenylamine - Pentachlorophenol - Phthalate Esters Diethyl Phthalate - Butylbenxylphthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH ++ Acenaphthene - Fluorene Phenanthrene - Phenanthrene - Anthracene - HPAH +++	
Benzoic Acid Dibenzofuran N-Nitrosodiphenylamine Pentachlorophenol Phthalate Esters Diethyl Phthalate Di-n-Butyl Phthalate Butylbenxylphthalate Bis(2-Ethylhexyl)phthalate Di-n-Octyl Phthalate Di-n-Octyl Phthalate LPAH ++ Acenaphthene Fluorene Phenanthrene Anthracene HPAH +++	
Dibenzofuran - N-Nitrosodiphenylamine - Pentachlorophenol - Phthalate Esters Diethyl Phthalate - Di-n-Butyl Phthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - Di-n-Octyl Phthalate - Fluorene - Phenanthrene - Anthracene - HPAH + + +	
N-Nitrosodiphenylamine - Pentachlorophenol - Phthalate Esters Diethyl Phthalate - Di-n-Butyl Phthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH ++ Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH +++	
Pentachlorophenol - Phthalate Esters Diethyl Phthalate - Di-n-Butyl Phthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH ++ Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH +++	
Pentachlorophenol - Phthalate Esters Diethyl Phthalate - Di-n-Butyl Phthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH ++ Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH +++	
Phthalate Esters Diethyl Phthalate - Di-n-Butyl Phthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH ++ Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH +++	
Diethyl Phthalate Di-n-Butyl Phthalate Butylbenxylphthalate Bis(2-Ethylhexyl)phthalate Di-n-Octyl Phthalate LPAH ++ Acenaphthene Fluorene Phenanthrene Anthracene HPAH +++	
Di-n-Butyl Phthalate - Butylbenxylphthalate - Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH ++ Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH +++	
Butylbenxylphthalate Bis(2-Ethylhexyl)phthalate Di-n-Octyl Phthalate LPAH ++ Acenaphthene Fluorene Phenanthrene Anthracene HPAH +++	
Bis(2-Ethylhexyl)phthalate - Di-n-Octyl Phthalate - LPAH + + - Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH + + + -	
Di-n-Octyl Phthalate	
LPAH + + Acenaphthene	
LPAH + + Acenaphthene	
Acenaphthene - Fluorene - Phenanthrene - Anthracene - HPAH +++	
Fluorene - Phenanthrene - Anthracene - HPAH +++	
Phenanthrene - Anthracene - HPAH +++	
Anthracene - HPAH + + +	
HPAH +++	
Fluoranthene	
Pyrene -	
Benzo(a) Anthracene -	
Chrysene -	
Benzo(b)Fluoranthene -	
Benzo(k)Fluoranthene -	
Delizo(a) i yielie	
Pest/PCB Compounds	
gamma-BHC (Lindane) 0.27	
alpha-Chlordane 0.092 J 2.4 0.0043	
Lab Log #: 308083 338416 368247 398193 Freshwater Toxicity	
Type: ECO-Comp ECO-Comp ECO-Comp Criteria (EPA, 1986b)	
Date: 7/25-26 8/15-16 9/5-6 9/26-27 Acute Chronic	
Metals $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$	
Arsenic 4.2 5.7 R 3.2 R - 850(360)*+ 48(190)*+	
Cadmium	
Chromium	
Copper - 14 33 79.3 10+ 7+	
Lead 5.7 B - 3.3 B 9.2 B 37+ 1.5+	
Mercury 0.13 0.38 2.4 0.012	
Nickel	
Selenium	
Selvindin	
Zinc 95.1 B 69.8 B 94.7 196 69+ 63+	

- * insufficient data to develop criteria Lowest Observed Effect Level (LOEL) presented.
- ** 0.39% solids were found in the organics sample used for dry weight calculations of organics. 0.34% solids were found in the TOC sample used for dry weight calculations of metals.
- *** summary of data collected during previous Class II Inspections statewide at activated sludge plants (Hallinan, 1988).
 - + calculation based on hardness (54 mg/L).
- *+ Pent(Tri) Pent is LOEL.
- ++ LPAH low molecular weight polynuclear aromatic hydrocarbons.
- +++ HPAH high molecular weight polynuclear aromatic hydrocarbons.
 - J indicates an estimated value when result is less than specified detection limit.
 - B This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination.
 - R low spike recovery result may be biased low.
 - D value from analysis of a diluted sample.

Table 9. North Bend STP Effluent Bioassay Results - SRD, 1989.

Trout (Oncorhync	chus mykiss)	- 96 hour	Rainbow Trout (Oncorhynchus mykiss) - 96 hour survival test
	# Tested	# Survived	Percent Mortality	Percent Survival
	20	20	0	100
Effluent	20	20	0	100
Effluent	20	20	0	100
Effluent	70	19	5	95
50.0 % Effluent	70	20	0	100
Effluent	20	20	0	100

Ceriodaphnia dubia - 48 hour survival and 7 day reproduction test

 $96 \text{ hr LC}_{50} > 100\% \text{ effluent}$

	Mean # Young per Original Female	24.7 27.9 24.9	30.3 29.2	
after 7 days	Percent Survival	90000	100	> 100% effluent N/A
	Percent Mortality	0000	00	i
	# Percent Survived Mortality	10 10 10 10	10	NOEC
	Percent Survival	8888	100	effluent
after 48 hours	Percent Mortality	0000	00	C ₅₀ > 100% effluent
191	# Survived	10 10 10 10	10	48 hr LC _s
	# Tested	01 00 00		
	Sample	Control 6.25 % Effluent 12.5 % Effluent 25.0 % Effluent	50.0 % Effluent 100 % Effluent	

Table 9. (Continued) - SRD, 1989.

Fathead Minnow (Pimephales promelas) - 96 hour survival and 7 day growth test

	Mean Weight per Fish (mg)	0.43 0.30 0.45 0.54 0.57	> 100% effluent N/A
	Percent Survival	100 97 97 97	
after 7 days	Percent Mortality	0 ~ ~ ~ ~ ~	NOEC
QI	# Survived	75 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	}
	Percent Survival	100 100 100 100 100	Ħ
after 96 hours	Percent Mortality	00%00%	> 100% effluer
	# Survived	30 30 30 30 30 30	LC_{50}
	# Tested	333333	
	Sample	Control 6.25 % Effluent 12.5 % Effluent 25.0 % Effluent 50.0 % Effluent	

NOEC - no observable effects concentration LOEC - lowest observable effect concentration LC₅₀ - lethal concentration for 50% of the organisms EC₅₀ - effects concentration for 50% of the organisms

Table 10. North Bend STP - Split Sample Results Comparison - SRD, 1989.

		Lab Log-: Numbers:	308081	308082	308083	308084	338420
		Numbers: Sample:	ECO-Inf	STP-Inf	ECO- Ef	STP-Ef	Effluen
		Date:	7/25-26	7/25-26	7/25-26	7/25-26	8/15
		Time:	0915-0915	0915-0915	0915-0915	0915-0915	1350
Parameter Parameter	Laboratory	Type:	Composite	Composite	Composite	Composite	Grab
Age and a design conductor of the contract of			150	170			
TSS (mg/L)	Ecology		150 238	170 198	6 5	6 4	
	North Bend		230	170	3	4	
BOD, (mg/L)	Ecology		190 J	140 J	5 J	5 J	
2023 (1118, 2)	North Bend		140	136	1	1	
Fecal Coliform	Ecology						3
	North Bend						*

J estimated value

From his records:

8/14 - 6/100 mL

8/16 - 5/100 mL

^{*} operator was unsure which was the split sample.

SETTING

The Snoqualmie STP is an aerated lagoon type secondary facility (Figure 2). Treatment units include two aerated lagoon cells and chlorination facilities. Chlorine contact time is provided in the underground line between the chlorination building and the effluent weir.

Influent to the plant comes from three sources: the Town of Snoqualmie; the Snoqualmie Falls Resort area; and domestic waste from Weyco. The Snoqualmie and Weyco force mains empty into a small surge basin and join the Snoqualmie Falls flow just upstream of the influent flowmeter.

Samples collected, sampling times, and parameters analyzed are summarized in Table 11. Sample locations are illustrated in Figure 2.

RESULTS AND DISCUSSION

Flow Measurement

Influent and effluent flows were measured by Snoqualmie. The influent flow was measured at a 3-inch Parshall flume and the effluent flow was measured at a 9-inch rectangular weir (Table 12). Both meters were calibrated on September 5, 1989; midway through the studies. The effluent flowmeter appeared accurate during the three visits it was functioning: Ecology's instantaneous flow measurements agreed closely with effluent meter instantaneous flow measurements. Plant influent and effluent measurements were not in agreement. The influent meter appeared to be measuring accurately, but just before the September 26-27 sampling, the operator discovered and removed a large grease chunk obstructing flow near the Parshall flume. During the September 26-27 visit the influent and effluent flow measurements were nearly equal.

Conventional Parameters/NPDES Permit Compliance

Plant performance during the survey period was fairly consistent (Table 13). Effluent total inorganic nitrogen (TIN = NH_3 - $N + NO_2 + NO_3$ -N) concentrations were less than 4 mg/L, with NH_3 -N concentrations less than 1 mg/L except in the July 25-26 sample (1.9 mg/L). The Ecology September 5-6 influent sample TIN concentration was 16 mg/L. Effluent total-P concentrations ranged from 5-7 mg/L compared to the influent sample concentration of 8 mg/L, suggesting minimal reduction in the plant.

Dissolved oxygen (D.O.) concentrations were measured in the lagoons at the sludge sampling stations between 1545 and 1700 on September 6 (Figure 2). The lagoon temperature was 18°C and, as expected given the sunny day, the D.O. concentrations were quite high. Surface concentrations were 18 mg/L or higher, and two feet depth concentrations were 9.5 to 12 mg/L. The water depth in the lagoons was between 3.5 and 4.0 feet.

Influent pH caused some concern (Table 13). Two of the influent grab samples collected during the September 5-6 sampling had high pHs (9.7 and 11.3). The occurrences appeared to be sporadic as rechecks within 10 minutes were lower (7.9 and 8.8). Several attempts to associate the high pH with one of the three influent sources were unsuccessful. An effort to isolate the source of the high influent pHs is suggested.

Plant compliance with the pH and fecal coliform NPDES permit limits was good while compliance with BOD₅ and TSS limits appeared marginal (Table 14). BOD₅ in the Ecology July 24-25 effluent sample (42 mg/L-estimated) exceeded the monthly concentration limit, and the Ecology BOD₅ analytical result of the September 5-6 STP sample (56 mg/L) exceeded the monthly concentration limit and monthly and weekly loading limits. The STP sample result should be considered carefully because Ecology TSS analysis of the STP sample (150 mg/L) found almost twice the TSS concentration as was found in the corresponding Ecology sample (80 mg/L). TSS concentrations in the Ecology samples collected during the first three visits were slightly greater than the monthly limits, but well below the weekly limits. Operational or physical changes at the plant may be necessary to assure routine permit compliance.

Priority Pollutants - Water Samples

Very few organic priority pollutants were detected in the Snoqualmie samples (Table 15). Volatile organics (VOAs) detected in the effluent included methylene chlorine and acetone, both solvents used in sampling equipment clean-up. The configuration of the effluent sampling area did not allow VOA sample bottles to be filled directly. Solvent residual on the sampling equipment used was the likely source of these two compounds. Several semi-volatile compounds (BNAs) were detected in the influent, but all were below reliable quantification limits in the effluent. A complete list of priority pollutant scan target compounds and detection limits is included in Appendix A.

Compounds tentatively identified with the scan are noted in Appendix B. Concentrations in the effluent were lower than concentrations noted in the influent.

Several metals were detected (Table 15). Zinc exceeded chronic toxicity criteria in the four Ecology effluent composite samples collected. Metals exceeding chronic and acute toxicity criteria in one or more effluent sample include cadmium, copper, silver, and zinc.

Bioassays - Water

Effluent toxicity was minimal in the bioassays. All LC₅₀s, NOECs, and LOECs calculated were greater than 100 percent effluent (Table 16).

Sludge

The sludge sample was a composite of grab samples taken at eight stations in the lagoon. Sludge deposition of 0.5 to 1.0 foot was observed at the stations sampled (Figure 2). The samples were

collected using an Isco composite sampler. The sampler intake was held in the sludge and the pump run to collect sludge in the sampling line. The pump was reversed and the sludge was flushed from the sampling line into the sampling container.

Few organic priority pollutants were detected in the sludge sample (Table 15). Bis(2-Ethylhexyl)phthalate was the organic found in the highest concentration (41000 μ g/Kg dry wt). Snoqualmie sludge metals concentrations were fairly low, most falling below the geometric mean of samples collected during previous Class II Inspections at activated sludge plants in Washington (Table 15; Hallinan, 1988). A complete list of priority pollutant scan target compounds and detection limits is included in Appendix C. Compounds tentatively identified in the scan are noted in Appendix D.

Laboratory Procedure Review/Sample Splits

Laboratory procedures at the plant needed improvement. A new laboratory/office trailer had recently been stationed at the facility. The operator was not completely familiar with proper procedures. Arrangements were made with Mike Myers, an Ecology roving operator, to help teach the operator approved procedures. A "Laboratory Procedure Review Sheet" is included in Appendix E.

Split sample results comparison is of limited value (Table 17). The operators TSS results were considerably lower (275 mg/L and 55 mg/L) than the corresponding Ecology results (360 mg/L and 150 mg/L). Ecology laboratory problems allowed comparison of only one of four BOD₅ splits; Ecology result 56 mg/L, operator result 44 mg/L. A difference was noted in Ecology TSS results for the Ecology effluent (80 mg/L) and STP effluent (150 mg/L) samples. The Snoqualmie effluent sampler should be inspected to assure a representative sample is being collected.

There was a difference between the Ecology chlorine residual measurement (0.5 mg/L) and operator measurement (0.2 mg/L). The operator was using the ortho-tolidine method; a method which is not approved. A Standard Methods approved method should be used (APHA, 1985).

RECOMMENDATIONS AND CONCLUSIONS

Flow Measurement

The effluent flowmeter appeared to be accurate. After an obstruction was removed from the line near the influent meter; it appeared to measure accurately. The influent flume should be occassionally checked and cleared of debris as necessary.

Conventional Parameters/NPDES Permit Compliance

The plant was providing good nitrogen removal. Effluent BOD₅ and TSS concentrations appeared to be at or slightly above monthly permit limits. Operational or physical changes at the plant may be necessary to assure routine permit compliance.

Priority Pollutants - Water Samples

Few organics were detected. Those detected were found at low concentrations. Effluent concentrations of several metals exceeded freshwater toxicity criteria.

Bioassays - Water

Effluent toxicity was minimal.

Sludge

Few organics were detected. Most metals concentrations fell below statewide historical averages.

Laboratory Procedure Review/Sample Splits

Laboratory techniques needed improvement. Mike Myers, an Ecology roving operator, agreed to provide training. The Snoqualmie effluent sampler should be checked to assure it collects representative samples. Also, an approved chlorine residual test should be used.

Figure 2. Snoqualmie STP Flow Scheme - SRD, 1989. SNOQ-5

Table 11. Snoqualmie STP Sample Collection - SRD, 1989.

Lub Log- 100002			7/25-26	56	ANDROFFE		8/15	8/15-16						9/2-6				
Part		308092	308093		 	338421	338422			368230	368238				Town	म हा		
Disc. 1045 1515 1725 7725 8715 8715 8715 8715 8715 8715 8715 871		Muent						Effluent								Influent	벋	Influent
Trime: Grado Grado Composite Grado Gra		7/25					8/15	8/16	8/15-16	6//	9/2	5/6	5/6	5/6	5/6	5/6	9/6	9/6
	Time:	1045 Grab	1515 Grab		1100-1100	0905 Grah	1430 Grah	0840 Graft	0915- ** Composite	0910	0920 Grab	0930 Grab	1350 Grab	1430 Grab	1430 Grab	1430 Grab	Grab	Grab
	a ye.	6		1					•									
	ried Allaryses	ţ	ŗ	Ļ	L	Ľ	Ľ		ш		μ	μ	Į	ĮI.	ĮI.	μ	[L]	ш
Music Services 1	нd	ᆈ	n) I	ijļ	u i	ı) I	r) [ត្	ų į		ų p) L) L) L	ļμ	ц	ц	Į,
	Temperature	III I	मो।	ц!	ı) I	ᆈ	n i	IJ [ijţ		ijĻ	ų p	ជ្	a ta) p	វ ជ) h	ų (
	Conductivity	щ	щ	ш	щ	T)	ŋ	ŋ	ı)		ų	리	ŭ	ų	a	a	1	1
	Chlorine Residual						:	1										
	Total	ш	ш			ш	щ	щ	***************************************									
nadyses nadyses nadyses n	Free	Щ	Щ			ш	ш	щ										
	Laboratory Analyses				4,000.0													
E E E E E E E E E E E E E E E E E E E	Turhidity				ш				щ									
	Conductivity				μ				ш									
	Colombia (1913)				μ				μ									
	Aikalinity				a p				ц Ц									
	Hardness				n n				ůп									
n E E E E E E E E E E E E E E E E E E E	Chloride				ù				1									
	Cyanide								L									
	TS				1				n) i									
E E E E E E E E E E E E E E E E E E E	TNVS				m) I				ш									
n E E E E E E E E E E E E E E E E E E E	TSS				m				1 1									
n E E E E E E E E E E E E E E E E E E E	TNVSS				ш				ш									
Harmon E E E E E E E E E E E E E E E E E E E	BOD,				ш				щ									
n E E E E E E E E E E E E E E E E E E E	Inhib. BOD,																	
A E	COD				ш				ш									
E E E E E E E E E E	TOC																	
O2-N E	N-'HN				ш				щ									
Р Е	No.+NO.+N				ш				ш									
-P E	Total-P				ш				щ									
ids E	Ortho-P				ш				ш									
Coliform E B E E B E B<	% Solids				•				****									
tals CB CB Ad Minnow Laphnia dubia	Fecal Coliform	μ	Ш			щ	Ш											
CB E E E Adminow	no metals	ì)		ir.	ì	١		ш	ш								
CB E E B ad Minnow	BNA									щ								
CB ad Minnow	VOA								******	щ	ш		щ					
	Pest/PCB								Junior	i tr	ì		ł					
Fathead Minnow Ceriodaphnia dubia	Trout									1								
raurau viinnow Ceriodaphnia dubia	Fotherd Minnow																	
Centralina anota	Compactuation dubin																	
	Certodaphina anota																	

Table 11. (Continued) - SRD, 1989.

	8	Ω¢	17	3915	osite															•				,_ .										•••						
	398190	7	9/26-27		Composite		ш	Щ	田				ţ	ijΙ	r) t	IJ,	ijΙ	ij	ļ	T)	m i	ᆈᅵ	T)	T)	,	Œ)	1	T) I	ᆈ	<u>.</u>	щ		1	πì						
		E 691	9/27	1030	Grab		ш	ш	ы		Щ	щ																												
	398180 398181	THE PARTY OF THE P	9/26	1410	Grab		ш	Ħ	щ		щ	ΙIJ																					ш							
	398180			0915	Grab		'n	ш	ш		щ	щ																					ш							
9/26-27		Falls	9/26	1430	Grab		ш	Щ	ш																															
		Falls	10110cm initiacm initiacm initiacm initiacm initiacm (176 9/26 9/26 9/26 9/26 9/26		Grab		щ	ш	ш																															
		Town	n initiden 9/26		Grab		щ	ш	ш																															
		Town	n innuen 9/26		Grab		m	щ	ш																															
		Weyco Weyco Town	9/26	1434	Grab		田	Ħ	щ																															
					Grab		ш	ш	ш																															
	368245	368246	Sludge 9/6	1545-1700	Grab																						m					ш		ш	Щ	щ	ш			
	368237	5	S1P-E1	1000-1000 0800-0800 1545-1700	Composite Composite		ш	Щ	Щ					m	ш	Щ	ш	ш		ш	ш	ΕS	ш	ES		щ		ш	щ	ш	Ħ									
	368235		ECC- E1	1000-1000	Composite		田	ш	щ					щ	ш	ш	ш	щ	ш	щ	ш	ш	щ	ES	Щ	ш		ш	ш	щ	ш			Щ	щ		щ	<u>៖</u>	.	å
			Effluent Ef- Dup Effluent 0/5 0/5 0/6	1005	Grab		ш	ш	щ		щ	ш																												
9-5/6	368244	368243	: Ef- Dup 0/5	1415	Grab									щ	щ	щ	ъĵ	ш				四				щ		щ	ш	ш	щ		ш							
	1			1415	Grab		ш	ш	ш		ES	Ħ		Ħ	山	Ш	ш	山				ш				щ		ш	ъ	щ	ш		ES			щ				
	368240	368241	Effluent 0/5		Grab		Щ	ш	ш		щ	ш		ш	щ	щ	ш	щ				ш				щ		ш	щ	Ħ	щ		ы			ш				
	368234	:	STP-Inf	õ	Composite		щ	ĮT.	ш					щ	ш	ш	Ħ	щ		m	Щ	ES	ш	ES		щ		ш	ш	ш	ш									
	368232	368233	ECO-Inf	0630-0630	Composite		ш	i in	ш					щ	щ	ш	ы	Щ	ш	ш	ш	Щ	ш	ES	ш	щ		Щ	щ	Щ	Щ			ш	щ		щ			
	Lab Log- :	Numbers:	Sample:		Type: (Field Analyses	Ha	Temperature	Conductivity	Chlorine Residual	Total	Free	Laboratory Analyses	Turbidity	Conductivity	Alkalinity	Hardness	Chloride	Cyanide	TS	TNVS	TSS	TNVSS	BODs	Inhib. BOD,	COD	TOC	N-SHN	NO3+NO2-N	Total-P	Ortho-P	% Solids	Fecal Coliform	pp metals	BNA	VOA	Pest/PCB	Trout	Fathead Minnow	Ceriodaphnia dubia

Bioassay samples were hand composites made by mixing equal volumes of the 9/5-1005, 9/5-1415, and 9/6-1005 effluent grab samples.
 The compositor failed during the sampling period. The first 17 aliquots were collected as equal volumes every thirty minutes. An 18th aliquot that was equal in volume to the sum of the previous 17 was added at 0925 on 8/16.
 E - Ecology Laboratory Analysis.
 Sewage Treatment Plant Laboratory Analysis.

Table 12. Snoqualmie STP Flow Measurements - SRD, 1989.

Average Daily Flows +

Date	Influent Flow (MGD)	Effluent Flow (MGD)
7/25-26	0.40 ++	0.14 *
8/15-16	1.15 ++	0.17 *
9/5-6	0.41 + +	0.23 **
9/26-27	0.22	0.23 **

- + Influent measurements were made at a 3-inch Parshall flume. Effluent measurements were made at a 9-inch rectangular weir. Both meters were recalibrated 9/5/89.
- ++ Poor agreement between the influent and effluent flow rates was thought to be caused by a grease chunk lodged near the influent Parshall flume.

 The operator found and removed the chunk just before the 9/26-27 sampling.
 - * Average of Ecology instantaneous measurements
 - ** Measurement from Snoqualmie STP effluent meter totalizer

Instantaneous Effluent Flow Measurements *

Date	Time	<u>Snoqual</u> Head(ft)	Imie Meter Flow(MGD)	Ecology M Head(ft)	Measurement Flow(MGD)
7/25	1515	0.17	0.11	0.20	0.14
7/26	1130	0.23	0.17	0.21	0.15
8/15	905	meter	r broken	0.22	0.16
8/15	1430		r broken	0.23	0.17
8/16	940		r broken	0.23	0.17
9/5 9/5 9/6	1025 1430 1005	0.38 0.32	0.34 0.27	0.24 0.35 0.30	0.18 0.30 0.24
9/26	905	0.28	0.22	0.25	0.19
9/26	1410	0.28	0.22	0.25	0.19
9/27	1035	0.31	0.25	0.28	0.22

^{*} Staff gauges and flowmeters for the influent flume and effluent weir were accurate. Plant meter instantaneous flow readouts are in gallons per second.

Table 13. Snoqualmie STP - Ecology Laboratory Results-SRD, 1989.

9/5-6	368239 Weyco Town Falls Influent Influent Influent Influent 9/5 9/5 9/5 9/6 9/6 1350 1430 1430 0925 0930 Grab Grab Grab Grab Grab Grab	7.5 7.2 7.5 11.3 8.8 18.0 16.9 17.3 17.8 24.7 21.5 541 148 558 475 1300 355 541 148 558 475 1300 355 The compositor failed during the sampling period. The first 17 aliquots were collected as equal in volume to the sum of the previous 17 was added at 0925 on 8/16. Indicates compound was analyzed for but not detected at the given detection limit. This flag is used when the analyzed for but not detected at the indicates an estimated value. This flag is used when the analyzed for but not detected at the given detection limit, and the internal standard on which detection limit and the internal standard on which detection limit and the internal standard on which detection limit quantification was based was outside acceptance limits. requested but not analyzed for but not detected at the given detection limit, and the spike recovery was low so the actual detection limit may be higher. bottle over filled.
	38 nat Influent 9/5 0 0930 b Grab	7.9 17.1 3300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
	0 368238 1 Influent 9/5 0920 Grab	9.7.7 212.7 304.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	368230 368231 Blank 9/5 0910	J J J J J J J J J J J J J J J J J J J
	338417 ECO- Ef 8/15-16 0915- ** Composite	7.5 9.2 9.2 9.2 9.2 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3
8/15-16	Effluent 8/16 0940 Grab	7.3 19.48 348 1.2 <0.1
	338422 Effluent 8/15 1430 Grab	7.1 20.5 355 355 (0.1 71
	338421 Effluent 8/15 0905 Grab	7.1 119.7 34.7 11.1 <0.11
	308091 ECO- Ef 7/25-26 1100-1100 Composite	7.5 7.5 7.5 7.5 340 20 32.9 33.9 33.9 33.9 34.0 100 100 100 100 100 100 100 1
7/25-26	Effluent 7/26 1130 Grab	7.8 24.2 330
	308093 Effluent 7/25 1515 Grab	7.6 21.1 335 1.2 0.1 3 U
	308092 Effluent 7/25 1045 Grab	7.4 27.7 335 1.0 0.2 0.2
	Lab Log-: Numbers: Sample: Date: Time: Type:	Field Analyses pH (S.U.) Temperature (°C) Conductivity (umhos/cm) Chlorine Residual (mg/L) Total Free Laboratory Analyses Turbidity (NTU) Conductivity (umhos/cm) Akalinity (mg/L) TrS (mg/L) TrNVS (mg/L) Troc (mg/m (#/100mL) Antimony (mg/L) Arsenic (ug/L) Arsenic (ug/L) Arsenic (ug/L) Arsenic (ug/L) Copper (ug/L) Copper (ug/L) Solida Fecal Coliform (#/100mL) Antimony (ug/L) Arsenic (ug/L) Solida Fecal Coliform (#/100mL) Antimony (ug/L) Solida Trad-P (mg/L) Antimony (ug/L) Solida Trad-P (mg/L)

Table 13. (Continued) - SRD, 1989.

			0.516															
Lab Log-: 368232	368234	368240	368242	368244		368235	368237	368245							398180	398181		398190
-		368241 368243 Pffluori Pffluori			Helling	368236 PCO. Pf	STP.Pf	368246 Sludge	Weyco	Weyco	Town	Town Influent	Falls Influent I	Falls Influent	Effluent F	Effluent E	Effluent ECO- Ef	3CO- Ef
	9/2-6	9/5			9/6	9/2-6	9/5-6	9/6	97/6								72/6	9/26-27
Time: 0930-0930 Type: Composite	0930-0930 0800-0800 Composite Composite	1005 Grab	1415 Grab	1415 Grab	Grab	1000-1000 Composite	U800-0800 Composite	USUA-USUA 1545-1700 Composite Grab	1428 Grab	1434 Grab	Grab	1432 Grab	Grab	Grab	Grab	Grab	1	Composite
Field Analyses										,								
	6.6	7.6	7.7		7.8	7.8	7.6		7.3	7.4	7.9	7.9	7.3	7.8	7.4	7.4	7.5	7.8
Temperature (°C) 6.9	17.9	17.9	20.1		17.7	6.7	14.6		16.1	16.1	17.6	17.4	25.0	23.5	17.2	17.9	17.1	4.5
Conductivity (umhos/cm) 428	282	318	324		341	311	318		180	<u>3</u> 8	625	630	463	450	318	336	325	320
Chlorine Residual (mg/L)		Ġ	•		,										4	4	4	
l otal		×.0	C.0 \		0.1										< 0.0	< 0.1	< 0.0	
aboratory Analyses		1.0	1.5/		1.0/										;	•		
Turbidity (NTI) 49	230	17	17	81		17	24											18
hos/cm) 4	614	342	342	342		343	348											349
	264		88	87		87	88											68
	48	\$2		20		57	52											51
(1	25.8	20.9	25.8	24.4		28.2	23.3											30.2
						*												
	750					270	290											350
TNVS (mg/L) 85	79					110	8											180
•	360	\$4	96	120		80	150											
TNVSS (mg/L) 14	38					6	12											n n
	09 ^					æ	56 J											21
mg/L)						24												
406	1240	185	199	211		66	251											8
lry-wt)								140										
	9.6	0.24	0.26	0.23		0.51	0.41											0.55
mg/L) (0.40	5.6	7.8	2.7		5.9	5.9											2.5
Total-P (mg/L) 8.4	6.5	0.9	5.2	5.1		0.9	7.0											7.7
Ortho-P (mg/L) 3.6	3.0	3.4	3.2	3.2		3.2	3.4	1										3.7
				;			,	c.						ć	:			
#/100mL)		۳,	23 B(BOF 10 U			(mg	(mg/Kg dry wt)						6 7	-			
3.0	o !							97.5										0.0
0.1	UK																	
2.0	_							0.17										
5.0	ם					5.0 U		4.8 J										5.0
Chromium (µg/L) 12								42.0										
Copper (µg/L) 136						20		637										
10.1 B	~					2.9 B		120										2.8 B
Mercury ($\mu g/L$) 0.08						0.06 U		86										
20	Ω							21 J										20 U
0,0	, ,																	
0.50) =					11 05 0		5. 4. 2										
0.00	, -							11 000 0										
0.1	ρ																	20.00 The Contract of the Cont

Table 14. Snoqualmie STP-Comparison of Inspection Results with NPDES Permit Limits-SRD, 1989.

	NPDES Per		7/25 26	0/15 16	0.5.6	0.15.6	0/26.27
Parameter *	Monthly	Weekly Average	7/25-26 Ecology Samples	8/15-16 Ecology Samples	9/5-6 Ecology Samples	9/5-6 STP Samples	9/26-27 Ecology Samples
BOD,	and the state of t				***************************************	plays and the fifth and ages, some company of the	
(mg/L)	30	45	42 J	23 J	NR	56 J	21
(lbs/D)	51	76	49	33		107	40
(% removal)	85				**	**	
TSS							
(mg/L)	75	110	78	78	80	150	44
(lbs/D)	163	239	91	111	153	288	84
Fecal coliform	200	400	3 U	26	3		29
(#/100 mL)			3 U	17	23 BOF		11
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					10 U		
pH (S.U.)		be outside e 6.0 - 9.0	7.4,7.6,7.8	7.1,7.1,7.3	7.6,7.7,7.8		7.4,7.4,7.5
Flow (MGD)			0.14	0.17	0.23	0.23	0.23

^{*} Ecology analytical results - composite samples for BOD₅ and TSS, grab samples for pH and fecal coliforms.

^{**} cannot be calculated due to unreliable influent analysis

J estimated

NR requested but not analyzed BOF bottle overfilled

U less than

Table 15. Snoqualmie STP-Priority Pollutants Detected and Toxicity Criteria Comparison - SRD, 1989.

	Transfer Blk	Snoqualm	ie Influent		Snoqualmie Slu	idge	**************************************	
Lab Log #:	368231	368238	368239	368246				
Type:		Grab	Grab					
Date:	9/5	9/5	9/5	9/6				
Time:	0910	0920	1350	1545-1700				
% Solids				6.5				
TOC (% dry wt basis)				14				
VOA Compounds	(μg/L)	(μg/L)	$(\mu g/L)$	μg/Kg dry wt)				
Methylene Chloride	-	22.7	17	1 :				
Acetone	-	22 J	-	17 J				
Carbon Disulfide Chloroform	_	6	3 J	1 17				
Toluene	-	2 J	4 J	1 -				
Chlorobenzene	-		-	100				
Styrene	-	-	-	21 J				
Total Xylenes	-	-	2 J	19 J				
7 -1 7 #-	368231	368233		368246				
Lab Log #:	308231	ECO-Com	,	9/6				
Type: Date:	9/5	9/5-6	,	1545-1700				
Daw.	71.5	2/3 0		13.5 1,00			***************************************	· · · · · · · · · · · · · · · · · · ·
BNA Compounds	$(\mu g/L)$	(μg/ L)		μg/Kg dry wt)				
Phenol	-	3 J		-				
1,4-Dichlorobenzene	-	3 J		-				
Benzyl Alcohol	-	22 17		-				
4-Methylphenol Benzoic Acid	-	62		5300 J				
Dimethyl Phthalate	-	02 1 J		3300 3				
Diethyl Phthalate	-	6 J		1600 J				
Phenanthrene	-			940 J				
Pyrene	-	-		900 J				
Bis(2-Ethylhexyl)phthalate	; -	27		41000				
Di-n-Octyl Phthalate	-	2 J		-				
Total Phthalate Esters								
Pest/PCB Compounds								
Endosulfan Sulfate	-	0.00		210 J				
4,4'-DDT	+	0.00)					
					St	tatewide Class	II	
Lab Log #:	368231	368233		368245		ludge Data **	· *	
Type:		ECO-Com	,	9/6	Geometric		#	
Date:	9/5	9/5-6		1545-1700	Mean	Range	Sampled	
Metals	(μg/ L)	(μg/L)		(mg/Kg dry wt)) (mg/Kg dry w	1)	
Arsenic	()	-		40	,	. <i>5</i> 5 7 ···	•	
Beryllium	_	-		0.17 J				
Cadmium	-	-		4.8 J	7.6	< 0.1-25	34	
Chromium	-	12		42.0	62	15-300	34	
Copper	-	136		637	400	75-1700	34	
Lead	-	10.1 B		120	210	34-600	34	
Mercury	-	0.08		98	26	Z0 1 62	20	
Nickel	-	-		21 J	26	< 0.1-62	29	
Selenium	-	_		0.024 J 54.3				
Silver Zinc	4.9 B	134 B		1150	1200	165-3370	33	
LIN	T., U	137 1		1120		100 00 70		

Table 15. (Continued) - SRD, 1989.

		Snoqualmie	Effluent				
Lab Log #: Type:	368241 Grab 9/5	368243 Grab 9/5				er Toxicity PA, 1986b)	
Date: Time:	1005	1415			Acute	Chronic	
% Solids							
TOC (% dry wt basis)							
VOA Compounds	$(\mu g/L)$	(μg/ L)			(μg/L)	$(\mu g/L)$	
Methylene Chloride	80	55					
Acetone	590 DJ	860 J					
Carbon Disulfide	-	-					
Chloroform	8	9 J			28900*	1240*	
Toluene	2 J	-			17500*		
Chlorobenzene	-	-			1		
Styrene	- ,	=			İ		
Total Xylenes		-					
Lab Log #:	368235				Freshwat	er Toxicity	
Type:	ECO-Comp				Criteria (E	PA, 1986b)	
Date:	9/5-6				Acute	Chronic	
BNA Compounds	(μg/L)				1		
Phenol	-						
1,4-Dichlorobenzene	-						
Benzyl Alcohol	-						
4-Methylphenol							
Benzoic Acid	-						
Dimethyl Phthalate	-						
Diethyl Phthalate	-						
Phenanthrene	_						
Pyrene	-						
Bis(2-Ethylhexyl)phthalate	3 J						
Di-n-Octyl Phthalate	-						
Total Phthalate Esters	3 J				940*	3*	
Pest/PCB Compounds							
Endosulfan Sulfate	-						
4,4'-DDT	-						
Lab Log #:	368235	308091	338417	398190	Freshwat	er Toxicity	
Type:	ECO-Comp	ECO-Comp	ECO-Comp	ECO-Comp		PA, 1986b)	
Date:	9/5-6	7/25-26	8/15-16	9/26-27	Acute	Chronic	
Metals	(μg/ L)	(μg/L)	(μg/L)	(μg/ L)			
Arsenic	(µg, L)	(mg/ ==)	(μ _B , 25)	ψ-φ: -)			
Beryllium	-	-	-	-			
Cadmium	-	-	6.9	.	2.0 +	0.7 +	
Chromium	-	-	6.0	-	1048(16) *+	125(11)*+	
Copper	20	20	30	20	10 +	` 1+	
Lead	2.9 B	3.8 B	3.8	2.8 B	37 +	1.5+	
Mercury	-	-	-	-			
Nickel	_	-	-	-			
Selenium	_	-	-	-			
Silver	-	-	2.2	=	1.4 +	0.12	
Zinc	30.4 B	72.9 B	39.3 B	29.6 B	69 +	63+	

J indicates an estimated value when result is less than specified detection limit

B This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination

D value from analysis of a diluted sample

DJ comment D plus comment J

^{*} insufficient data to develop criteria - Lowest Observed Effect Level (LOEL) presented

*** summary of data collected during previous Class II Inspections statewide at activated sludge plants (Hallinan, 1988)

⁺ calculation based on hardness (54 mg/L)

^{*+} Tri(Hex) - Tri based on hardness

Table 16. Snoqualmie STP Effluent Bioassay Results - SRD 1989.

Rainbow Trout (Oncorhynchus mykiss) - 96 hour survival test	ncorhynchus	. mykiss) - 9(5 hour surviv	al test
Sample	# Tested	# Survived	Percent Mortality	Percent Survival
Control	20	20	0	100
6.25 % Effluent	20	20	0	100
	20	20	0	100
25.0 % Effluent	20	18	10	8
	20	19	\$	95
100 % Effluent	20	14	30	70
		96 hour LCs	٨	100% effluent

Ceriodaphnia dubia - 48 hour survival and 7 day reproduction test

	Mean # Young per Original Female	18.0 20.8 16.1		1
after 7 days	Percent Survival	06 8 8	£ & 8	80 > 100% e
after	Percent Mortality	10 20 20	70 70 70 70	20 NOEC > LOEC
	# Survived	σο∞:	ν ∞ ο	∞
	Percent Survival	06 8 9	30 80 80 80 80 80 80 80 80 80 80 80 80 80	eff
3 hours	Percent Mortality	10 20 20	70 70 70	^
after 48 hours	# P Survived M	ο ο ∞ ;	2 ∞	8 48 hr LC ₅₀
	# Tested	01000	90	10
	Sample	Control 6.25 % Effluent 12.5 % Effluent	25.0 % Effluent 50.0 % Effluent	100 % Effluent

Fathead Minnow (Pimephales promelas) - 96 hour survival and 7 day growth test

	Mean Weight per Fish (mg)	18 40 60 0.29 17 43 57 0.33 19 37 63 0.37 22 27 73 0.36 21 30 70 0.27 16 47 53 0.24 NOEC not calculated due to high control mortality.
after 7 days	1	60 57 63 73 70 53 d due to hi
af	Percent Percent Mortality Survival	40 43 37 27 30 47 ot calculate
	# Survived	18 17 19 22 21 21 16 NOEC n
	Percent Survival	80 90 93 77 83
after 96 hours	Percent Mortality	20 80 10 90 10 90 7 7 93 23 77 17 83
ଷ	# Survived	24 27 27 28 23 23 25 96 hr LC ₅₀ >
	# Tested	30 30 30 30 30
	Sample	Control 6.25 % Effluent 12.5 % Effluent 25.0 % Effluent 50.0 % Effluent 100 % Effluent

NOEC - no observable effects concentration LOEC - lowest observable effects concentration LC₅₀ - lethal concentration for 50% of the organisms EC_{50} - effect concentration for 50% of the organisms

Table 17 - Snoqualmie STP - Split Sample Results Comparison - SRD, 1989.

		Lab Log-: Numbers: Sample:	368232 368233 ECO-Inf	368234 STP-Inf	368242 368243 Effluent	368235 368236 ECO-Ef	368237 STP-Ef
		Date: Time:	9/5-6 0930-0930	9/ 5-6 0800-0800	9/5 1415	9/5-6 1000-1000	9/5-6 0800-0800
Parameter	Laboratory	Type:	Composite	Composite	Grab	Composite	Composite
Total Chlorine Residual (mg/L)	Ecology Snoqualmie				0.5 0.2		
TSS (mg/L)	Ecology Snoqualmie		140	360 275		80	150 55
BOD5 (mg/L)	Ecology Snoqualmie		LAC 650	LAC 680		LAC 43	56 44
Fecal Coliform (#/100 mL)	Ecology Snoqualmie			10	0 U & 23 BC)F	

LAC laboratory accident BOF Bottle overfilled U less than

SETTING

The Duvall STP is an oxidation ditch type secondary plant (Figure 3). Design monthly average flow is 0.2 MGD. Both oxidation ditches and both secondary clarifiers were operating during all visits. On July 25-26, and on September 5-6, one chlorine contact chamber was being operated. On August 15-16, and September 26-27, both chlorine contact chambers were being operated. Flow was measured at an effluent Parshall flume.

Waste sludge disposal was difficult. There were no means of holding or thickening waste sludge. Return activated sludge was wasted directly into a 900 gallon tank truck for land application on one of three local sites.

Dean Castinelli was plant operator during the first sampling date. The city elected not to retain him at the end of his probationary period. John Light, supervisor of public works and previous plant operator, assumed the operator duties during the remainder of the visits as a new operator was sought.

Samples collected, sampling times, and parameters analyzed are summarized in Table 18. Sample locations are illustrated in Figure 3.

RESULTS AND DISCUSSION

Flow Measurement

Flow measurements were being made at the effluent 6-inch Parshall flume (Table 19). Ecology instantaneous measurements made at the flume corresponded closely with the plant meter instantaneous flow measurements. The flowmeter appeared to be measuring accurately during the inspections.

Conventional Parameters/NPDES Permit Compliance

Visual differences were apparent during the series of visits at the Duvall STP. During the July 25-26 visits, containment of solids in the plant was a problem. Sludge was observed billowing over the clarifier launder weirs and the chlorine contact chamber weir during both morning visits. The operator was attempting to maximize sludge wasting, but was frustrated by the lack of sludge thickening facilities. The afternoon visit found the plant keeping solids in, but sludge was settling poorly suggesting another washout would likely occur.

During the August 15-16 visits, the plant appeared to have experienced a recent toxic upset. The oxidation ditches were a gray color and the effluent had the appearance of primary effluent. John Light was in his first full week of plant operation and was unsure what had happened. Chlorine addition to the oxidation ditches had been used in an effort to discourage filamentous

growth and encourage settling. He theorized that excess chlorine had been added during the operator transition time the previous week. The operator detected a chlorine residual in the oxidation ditch, although the Ecology test found no residual in the oxidation ditch or clarifier overflow.

The September 5-6 and September 26-27 visits found the plant returning to conditions similar to that of the July 25-26 inspection. Solids losses and poor settling in the clarifiers were observed.

Samples collected during the first visit indicated some nitrification was occurring; the effluent NH₃-N concentration was 1.3 mg/L (Table 20). Nitrification was not occurring during the last three visits; effluent NH₃-N concentrations 9.7 mg/L or more. The nitrifying organisms may have been lost during the August 15-16 upset. Maintaining reasonable clearwater depths in the secondary clarifiers was consistently accomplished only during the upset visit on August 15-16 (Table 21). Solids accumulation in the chlorine contact chambers was also occurring.

Results comparison with NPDES permit effluent limits showed poor compliance during the visits (Table 22). The TSS exceeded weekly and monthly concentration and monthly loading limits during all the visits; and also exceeded the weekly loading limits during the two September visits. The fecal coliform concentrations were consistently higher than the permit limits. Poor Ecology laboratory BOD₅ analysis prevented good comparison of BOD₅ inspection results with the permit limits.

Priority Pollutants - Water Samples

Organics concentrations were low in the effluent sample (Table 23). The total phthalate esters concentration (23 μ g/L-estimated) exceeded the chronic freshwater toxicity criteria: it was the only organic found in the effluent in excess of freshwater toxicity criteria (EPA, 1986b). Several organics were found in the influent sample. Benzoic acid (148 μ g/L) was found at the highest concentration. Most of the compounds found in the influent were removed from the liquid stream during the treatment process. A complete list of priority pollutant scan target compounds and detection limits is included in Appendix A.

Compounds tentatively identified in the scan are noted in Appendix B. More compounds and higher concentrations were noted in the influent than in the effluent.

Several metals were detected in the effluent (Table 23). Metals exceeding only chronic toxicity criteria in one or more of the effluent metals samples include lead and mercury. Metals exceeding chronic and acute toxicity criteria in one or more of the effluent metals samples include copper, silver, and zinc.

Bioassays - Water

Some effluent toxicity was observed in the bioassays (Table 24). Acute toxicity was observed in both the rainbow trout ($LC_{50} = 50\%$ effluent) and fathead minnow ($LC_{50} = 62\%$ effluent) tests. Chronic toxicity was observed in the *Ceriodaphnia dubia* (NOEC = 25% effluent) and fathead minnow (NOEC = 50% effluent) tests.

Several metals were noted in concentrations greater than toxicity criteria (see priority pollutants-water). The effluent NH₃-N concentration was 19 mg/L-estimated which exceeded acute and chronic toxicity criteria for the test conditions (trout test conditions: chronic criteria 1.7 mg/L NH₃-N, acute criteria 8.7 mg/L NH₃-N; *Ceriodaphnia dubia* test conditions: chronic criteria 1.1 mg/L NH₃-N, acute criteria 8.4 mg/L NH₃-N; fathead minnow test conditions: chronic criteria 1.2 mg/L NH₃-N, acute criteria 15.6 mg/L NH₃-N).

Sludge

Few organic priority pollutants were detected in the sludge sample (Table 23). Bis(2-Ethylhexyl)phthalate was the organic found in the highest concentration (150 μ g/L). Duvall sludge metals concentrations were less than the geometric means for samples collected during previous Class II Inspections at activated sludge plants in Washington (Table 23; Hallinan, 1988).

A complete list of priority pollutant scan target compounds and detection limits is included in Appendix C. Compounds tentatively identified in the scan are noted in Appendix D.

Laboratory Procedure Review/Sample Splits

Laboratory and sampling procedures at the plant were generally acceptable. Minor recommendations are included in the "Laboratory Procedure Review Sheet" included in Appendix E.

The split samples results comparison was good for TSS and chlorine residual (Table 25). Poor Ecology laboratory analysis of BOD₅ prevented results comparison for the parameter. The Duvall fecal coliform result (1800/100mL) was lower than the Ecology result (24000/100mL-estimated) by an order of magnitude. The Duvall plate count was high, suggesting a greater dilution factor is necessary for a more accurate count.

RECOMMENDATIONS AND CONCLUSIONS

Flow Measurement

The flowmeter appeared to be measuring accurately during the inspection.

Conventional Parameters/NPDES Permit Compliance

Solids loss was a problem during the inspections. Also, there was an apparent toxic upset in early August. Effluent TSS concentrations and loads, and fecal coliform concentrations frequently exceeded permit limits. Poor Ecology analysis of BOD₅ prevented good comparison of the parameter with permit limits.

Priority Pollutant - Water Samples

Effluent organic concentrations were low. Effluent concentrations of total Phthalate Esters and several metals exceeded freshwater toxicity criteria.

Bioassays - Water

Some acute and chronic toxicity was observed in the effluent. Ammonia or the priority pollutants observed in excess of the freshwater toxicity criteria are possible causes.

Sludge

Few organics were observed in the sludge. Metals concentrations fell below statewide historical averages.

Laboratory Procedure Review/Sample Splits

Analytical and sampling procedures were generally acceptable. Recommendations for minor changes are included in Appendix E. Greater dilution factors for fecal coliform testing are recommended when counts are as high as found during the inspection.

Figure 3. Duvall STP Flow Scheme - SRD, 1989.

Table 18. Duvall STP - Sample Collection - SRD, 1989.

Part			1/	7/25-26															
Simple Efficient Efficie	Lab Log-:	308095	308086		308094			338408		338401 338402	338403			338413	. ന സ		338406	338414 338415	
Type 1723 7224	Sample:	Effluent	Effluent	Effluent	ECO-Ef				Influent	ECO-Inf	STP-Inf				Effluent E		STP-Ef	RAS 8/16	
Type 1 Gab Gab Gab Gab Gab Gab Gab Gab Gab Gab	Date:	7/25	1600		7/25-26 1200-1200	8/15 1140		8/15 1600		8/15-16 1200-1200	8/15-16 1200-1200				1115 12	00-1200	200-1200	1205	
nutron	Type:	Grab	Grab		Composite		- 1	Grab		Composite (Composite				Grab Co	omposite (Composite	Grab	
### Secricial Control of the Control	field Analyses																		
Privity B B B B B B B B B B B B B B B B B B B	He	Щ	田	ш	ш		田	田	山	田	山	凹	田		ш	m:	ш		
Felicity B. Felic	Temperature	щ	ш	ш	ш		ш	四	ш	EL I	ш	ш	ய		ចារ	m t	шг		
New contact Contact	Conductivity	ш	ш	ш	ш		ш	ш	m	ш	ш	щ	п		ਸ	n	n		
	Chlorine Residual	ţ	٤	ţ								Į.	ц		ţı				
Ory Analyses 1. 1	Lotai	цп	n n	n n								JП	ìп) pi				
O.D., M. M. M. M. M. M. M. M. M. M. M. M. M.	shoretom: Analyses	1	ı	1	ar trouble							1	1		ı				
Constraint Con	Carbidity				ш					ш	щ	щ	ш	ш		ш	田		
OD3 OAN OAN OAN OAN OAN OAN OAN OA	Conductivity) III.					ш	щ	ш	田	щ		ш	E		
ODs. Op. M. Minow. Op. Minow. Op. Minow. Op. M. Minow. Op. Minow.	Alkalinity				ш					щ	ш	ш	ш	ш		ш	田		
ODs. ODs. ODs. Op. N. Op. N. Minnow. Op. W. Minnow. Op. W. Op	Hardness				ы					ш	щ	ш	ш	ш		叫	ш		
OD, No. No. No. No. No. No. No. No. No. No.	Chloride				ш					ш	ш	ш	ш	ш		ED I	田		
OD, OD, And And And And And And And An	Cyanide				ţ					щr	2					n c	¢		
ODs ODs ODs ODs ODs ODs ODs ODs	I.S.				ηt					ijβ	r) t					L) D	u p		
ODy ODy B B B B B B B B B B B B B	SANI				r) ti					n n	n o	п	ц	Д		n N	л М		
ODy ES <	LISS				ηœ					n o m	ј п	د	1	נ		ў ш	; п		
Dy. N. B.	30D,				ш					ES	ES					E S	E S		
O-N O-N B B B B B B B B B B B B B	Inhib. BODs									ല						ш	1		
Q-N B	COD				ப					ш	ш	田	ш	ш		ш	ш	ţ	
O ₂ -N E <td< td=""><td>roc</td><td></td><td></td><td></td><td>ţ</td><td></td><td></td><td></td><td></td><td>þ</td><td>ti</td><td>þ</td><td>p</td><td>р</td><td></td><td>р</td><td>Ц</td><td>บ</td><td></td></td<>	roc				ţ					þ	ti	þ	p	р		р	Ц	บ	
ds ds ds ds ds ds ds ds ds ds	NH3-1N NO: + NO:-N				цп					цц	цα	цш	i m	jπ		ц	a pa		
P B	Fotal-P				п					ш	ш	ш	ш	ш		ш	叫		
ds ds B	Ortho-P				ш					ш	ப	ய	田	ш		ш	ш		
A Minnow	% Solids	i										i	1	6				п	
A Minnow	Fecal Coliform	ш	щ		ŗ					ţ		ш	n	тì		E		p	
CB E E E E E E E E E E E E E E E E E E E	op metals				n	n) tr				r) tr						цц		ப்ப	
CB E E E E E E E E E E E E E E E E E E E	70A					ш	ш	п		1		ш	ш			1		ш	
4 Minnow	Pest/PCB					ш				m						ш		ш	
	Frout															т			
	Fathead Minnow															Ţ			

Ecology Laboratory Analysis
Sewage Treatment Plant Laboratory Analysis
Bioassay samples were hand composites made by mixing equal volumes of the three (8/15-1105, 8/15-1540, and 8/16-1115) effluent grab samples.

Table 18. (Continued) - SRD, 1989.

			9/2-6						9/26-27			
Lab Log-:		368252	368253		368248	398182	398188	398183		398191	398194	
Numbers: Sample: Date:	Influent 9/6	Effluent 9/5	Effluent 9/5		ECO-Ef 9/5-6	Effluent 9/26	Ef-Dup 9/26	Effluent 9/26	Effluent 9/27	BCO-Bf 9/26-27	ECO-Ef-Dup 9/26-27	
Time: Type:	1325 Grab	1130 Grab	1555 Grab	1300 Grab	I145-1145 Composite	III0 Grab	III0 Grab	1510 Grab	1130 Grab	Composite	Composite	
Field Analyses												
Hd	日	日	叫	ы	ш	ы		田	凹	田		
Temperature	山	피	山	田	ш	山		п	叫	叫		
Conductivity	B	凹	田	山	ш	田		피	田	田		
Chlorine Residual												
Total		E S	田:	田口		щ		D) (凹口			
Free		1	IJ	ı		ı)		IJ	n			
Laboratory Analyses					1					ı	ı	
Turbidity					ш					ш :	EL I	
Conductivity					四					四日	DJ I	
Alkalinity					D)					ᇚ	Д) I	
Hardness					ш					ш	щı	
Chloride					ല					ш	ш	
					ţ					ŗ	ŗ	
					मा					ज :	ज १	
INVS					םנו					n) p	n) b	
					u r					ηp	r) p	
					1) 12					цп	п) [п	
) p					a a	1	
male, bobs					1 12					ш	p	
1000					1					1	1	
N+,-N					ш					щ	щ	
NO+NO-N					ш					山	口	
Total-P					田					山	മ	
Ortho-P					叫					田	ш	
% Solids												
Fecal Coliform		ES	叫			H	П	ш				
pp metals					굅					田	ш	
BNA												
VOA												
Pest/PCB												
Trout												
Fathead Minnow												
Ceriodaphnia dubia												

Table 19. Duvall STP - Flow Measurements - SRD, 1989.

	Average Daily Flows	
Date	Effluent * Flow (MGD)	
7/25-26 8/15-16 9/5-6 9/26-27	0.147 0.152 0.165 0.147	

* Measurements from Duvall STP effluent meter totalizer. Measurements made at a 6-inch Parshall flume.

Inst	antaneous Flo	ow Measure	ments	
		Duvall Ef Flowm		
Date	Time	Head(ft)	Flow(MGD)	outsiant de l'All
7/25 7/25	1135 1610	0.25 0.27	0.15 0.17	
8/15 8/15	1110 1530	0.22 0.17	0.12 0.08	
8/16	1240	0.31	0.20	
9/5 9/5 9/6	1130 1555 1430	0.35 0.14 0.17	0.25 0.06 0.08	
9/26 9/26	1110 1510	0.23	0.13 0.24	

* Effluent measurements made at a 6-inch Parshall flume. The staff gauge installed in the flume was checked by Ecology and found to be accurate. Occasional checks found the flow meter measuring accurately. Plant meter instantaneous flow readouts are in gallons per second.

Table 20. Duvall STP - Ecology Laboratory Results - SRD 1989.

			07.07.1													\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,,,,,,,
	308095	308096		308094	338400	338407	338408		338401 338402	338403	338409 338410		338413	ţ	338404	338406	338414 338415 345
Sample: Eff	Effluent 1	Effluent	Effluent	Effluent ECO. Ef	Blank 8/15	Influent 8/15	Influent 8/15	Influent 8/16	ECO-Inf 8/15-16	STP-Inf 8/15-16	Effluent 8/15	٠,	Ef. Dup 8/15	Effluent 8/16	8/15-16	8/15-16	8/16 8/16
Time: 11 Type: G	1150 Grab	1600 Grab		1200-1200 Composite	1140	1125 Grab	1600 Grab	1130 Grab	1200-1200 Composite	1200-1200 Composite	1105 Grab	1540 Grab	1540 Grab	Grab	I200-1200 Composite	Composite	Grab
	73	7.2	7.3	7.4	-	8.5	9.1	9.8	8.7	8.5	7.4	7.4		7.5	6.7	7.9	
-	19.7	21.2	21.1	6.7		19.5	19.5	19.7	7.7	8.9 6.0	18.4	4. 2. 4. 2.		595	545	\$65	
	440	445	472	4		200	C\$0	064	960	CCC	900	2					
		7.0	107								0.2	0.5		<0.1			
	0.4	< 0.1	< 0.1								< 0.1	< 0.1		< 0.1			
				;					77	46	0	9	01		18	18	
				13					\$ 5	10	£44	888	\$88		\$69	\$66	
				428					610	997	187	185	287		182	178	
				108					707	707	101	193	86		30	34	
				4					4 4	, t oc	25.0	747	35.0		35.8	37.0	
				40.4					33.7	7.07	4.00		2		v		
				9					4 085	470					360	360	
				930					250	210					210	220	
				081					180	150	38	36	37		2	47	
				S :	···				40	22	2	2			14	18	
				71 :					JA I	2401					LAC	38J	
				Ì					200J	 - 					431		
				æ					495	425	144	151	158		153	156	
				2												,	3
				1 3					21J	241	181	181	181		191	20.4	
				8					0.14	0.16J	0.127	0.12J	< 0.051		< 0.051	1.4	
				2.3					101	111	2.81	3.21	4.43		5.91	6.6	
				2.60					5.83	5.51	2.91	2.83	2.91		4.4	3.31	86 0
											1100011	1100778	030011				0.70
:1	12000	29									700017	Troops	70000		3.0 U		12 U
				2.0 0.7	3.0	_ F									1.7 R		18.9
						٤.			7.0 7.1						2.0 U		1.0 U
				0.4											5.0 U		23
				20.5											5.0 U		63
				25.					52.1						23		1320
				3.6 B					10 B						4.3 B		180
				0.42		-			0.33						0.22		17.5
				20 U		_									20 U		68
				2.0 11		-			2.0 U						2.0 U		9.73
				11 05 0	_										1.7		20.2
				101											2.0 U		4.0 U
															4		2550

Table 20. (Continued) - SRD, 1989.

			IL estimated - total plate count greater than 200.		NR requested but not analyzed. U indicates compound was analyzed for but not detected at the given detection limit.	J indicates an estimated value. B This slag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable	blank contamination. R low spike recovery - result may be biased low. UR indicates compound was analyzed	for but not detected at the given detection limit, and the spike recovery was low so the actual detection limit may be higher.	
	398194	ECO-Ef-Dup 9/26-27 1115-1115 Composite			29 515 137 40	200 200 92 1U 857	216 13 0.05 16 7.8	3.0 U JR 1.0 UR JJ 2.0 U S.0 U	
	398191	ECO- Ef 9/26-27 1115-1115 Composite	7.9 5.6 467		26 513 137 39	450 230 110 4 7	207 14 0.16 16 9.8	3.0 U 1.0 UR 2.0 U 5.0 U	28 3.9 B 0.25 20 U 2.0 U 2.0 U 4.5 1.0 U
		Effluent 9/27 1130 Grab	7.7 18.4 496	0.3					
7.	398183	Effluent 9/26 1510 Grab	7.3 18.7 484	1.2				1800	
9/26-27	398188	Ef-Dup 9/26 1110 Grab						1300	
	398182	Effluent 9/26 1110 Grab	7.3	0.6				2000	
	368248	ECO- Ef 9/5-6 1145-1145 Composite	7.8 5.4 510		28 508 144 37	35.8 150 140 31	25 152 9.7 0.19 7.8	3.0 U 1.0 UR 2.0 U 5.0 U	26 3.9 B 0.10 20 U 2.0 U 0.50 U 1.0 U 82.2
		Effluent 9/6 1300 Grab	7.6 18.9 485	0.7					
	368253	Effluent 9/5 1555 Grab	7.3 19.9 494	0.3				75000JL	
9-8/6	368252	Effluent 9/5 1130 Grab	7.5 18.8 478	0.6				24000JL 75000JL	
		Influent 9/6 1325 Grab	8.4 19.5 445						
	Lab Log-:	Numbers: Sample: Date: Time:	Field Analyses pH (S.U.) Temperature (°C) Conductivity (umhos/cm)	Chlorine Residual (mg/L) Total Free	Laboratory Analyses Turbidity (NTU) Conductivity (umhos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO ₃)	Chloride (mg/L) Cyanide (ug/L) TS (mg/L) TNVS (mg/L) TSS (mg/L) TNVS (mg/L) TSS (mg/L) CHOVSS (mg/L) CHOVSS (mg/L) CHOVSS (mg/L)		% Solids Fecal Coliform (#/100mL) Antimony (µg/L) Arsenic (µg/L) Beryllium (µg/L) Cadmium (µg/L)	Copper (ug/L) Lead (ug/L) Lead (ug/L) Mercury (ug/L) Nickel (ug/L) Selenium (ug/L) Silver (ug/L) Thallium (ug/L) Zinc (ug/L)

Table 21. Duvall STP Sludge Depth Measurements - SRD, 1989.

Date	Time	Unit **	Tank Depth (ft)	Sludge Blanket Thickness (ft)	Poorly Settled Sludge Layer (ft)	Clear- water Depth (ft)
7/25	1200	Clarifier #1	8.5	0.0	8.5	0.0
		Clarifier #2 Cl ₂ Contact Basin *	8.5 7.0	0.0	8.5	0.0
		near inlet		0.0	7.0	0.0
		near outlet		5.0	2.0	0.0
7/25	1620	Clarifier #1	8.5	2.0	5.0	1.5
		Clarifier #2 Cl ₂ Contact Basin *	8. 5 7.0	2.0	5.0	1.5
		near inlet		0.0		7.0
		half way		4.0		3.0
		near outlet		5.5		1.5
8/15	1145	Clarifier #1	8.5	1.5		7.0
		Clarifier #2	8.5	1.5		7.0
		Cl ₂ Contact Basin *	7.0	2.0		5.0
8/15	1530	Clarifier #1	8.5	2.0		6.5
		Clarifier #2	8.5 7.0	2.0		6.5
		Cl ₂ Contact Basin *	7.0	1.5		5.5
8/16	1245	Clarifier #1	8.5	2.5		6.0
		Clarifier #2 Cl ₂ Contact Basin *	8.5 7.0	2.0 1.0		6.5
		_		1.0		6.0
9/5	1145	Clarifier #1	8.5	1.5	7.0	0.0
		Clarifier #2	8.5	1.0	5.5	2.0
		Cl ₂ Contact Basin *	7.0			
		half way near outlet		6.0 6.0		1.0
				6.0		1.0
9/5	1600	Clarifier #1	8.5		3.0	5.5
		Clarifier #2	8.5		4.0	4.5
		Cl ₂ Contact Basin *	7.0	5.0		2.0
		half way near outlet		5.0 6.5		2.0
				0.3		0.5
9/6	1340	Clarifier #1	8.5	1.0	5.5	2.0
		Clarifier #2	8.5	1.0	5.5	2.0
		Cl ₂ Contact Basin *	7.0	5.5		1.5
9/26	1115	Clarifier #1	8.5	0.0	8.5	0.0
		Clarifier #2	8.5	0.0	8.5	0.0
		Cl ₂ Contact Basin *	7.0	3.0	4.0	0.0
9/26	1520	Clarifier #1	8.5	1.0	7.0	0.5
		Clarifier #2	8.5	1.0	7.0	0.5

^{*} Cl₂ contact basin samples collected near outlet unless otherwise specified.
** see Figure 3 for numbering system. On 7/25-26 and 9/5-6 one Cl₂ contact chamber was operating.
On 8/15-16 and 9/26-27 both Cl₂ contact chambers were operating.

Table 22. Duvall STP - Comparison of Inspection Results with NPDES Permit Limits - SRD 1989.

	NPDES Permit Limits	mit Limits	20.301	0/15/16	9/15/16			+ 12-96/6
Parameter *	Monthly Average	Weekly Average	Ecology Samples	o. 13-10 Ecology Samples	Samples	Ecology Samples	Ecology Samples	Ecology Samples
BOD ₅ (mg/L) (lbs/D) (% removal)	30 50 85	45 75	14 J 17	LAC	38 J 48 84	NR	22 PJ 27	85 PJ 104
TSS (mg/L) (lbs/D) (% removal)	30 50 85	45 75	50 61	54 68 70	47 60 69	140 193	110 135	92 113
Fecal coliform (#/100 mL)	200	100 **	12000	27000 JL 8400 JL 9300 JL		24000 JL 75000 JL	2000	1300
pH (S.U.)	shall not be outside the range 6.0 - 9.0	e outside 6.0 - 9.0	7.2,7.2,7.3	7.4,7.4,7.5		7.5.7.3,7.6	7.3,7.3,7.7	
Flow (MGD)			0.147	0.152	0.152	0.165	0.147	0.147

^{*} Ecology analytical results - composite samples for BOD₅ and TSS; grab samples for pH and fecal coliforms

** usually 400
+ duplicate analysis
J estimated
JL estimated - total plate count > 200
NR requested but not analyzed
PJ estimated - greater than
LAC laboratory accident

Table 23. Duvall STP-Priority Pollutants Detected and Toxicity Criteria Comparison-SRD, 1989.

Sample:	Transfer Blk	Duvail I	nflue nt	Duva	all Sludge			
Lab Log #: Type: Date: Time:	338425 8/15 1140	338407 Grab 8/15 1125	338408 Grab 8/15 1600		338415 Grab 8/16 1205			
% Solids TOC (% dry wt basis) VOA Compounds Methylene Chloride Acetone Chloroform 1,1,1-Trichloroethane Toluene	(μg/L)	(μg/L) - - 11 - -	(μg/L) 2 J - 12 1 J 2 J	(μg/L) - 14 3 J	++ 45 (μg/Kg dry wt) 2000 - 490 J			
Lab Log #: Type: Date:	338425 8/15	338402 ECO-Comp 8/15-16			338415 Grab 8/16			
	$(\mu g/L)$	(μg/L)		(μg/L)	(μg/Kg dry wt)			
Cyanide BNA Compounds Phenol		4 4 3		13	2000			
Benzyl Alcohol 4-Methylphenol Benzoic Acid	- - -	17 23 148		34	5200			
Di-n-Butyl Phthalate Butylbenxylphthalate Bis(2-Ethylhexyl)phthalate Total Phthalate Esters	32 B	26 B 6 J 32		5 J 150	720 J 22000			
						E .	Statewide Cla Sludge Data	
Lab Log #: Type: Date:	338425 8/15	338402 ECO-Comp 8/15-16			338414 Grab 8/16	Geometri Mean	c Range	# Sample
Metals Arsenic	(μg/L)	(μg/L) 1.9 R		(μg/L) 18.9	(mg/Kg dry wt) 1.9	(mg/K	(g dry wt)	
Cadmium	-			23	2.3	7.6	< 0.1-25	34
Chromium	-	5.0		63	6.4	62	15-300	34
Copper Lead	12.9	52.1 10 B		1320	135 18	400	75-1700	34
Mercury	12.7	0.33		17.5	1.8	210	34-600	34
Nickel	-	- 0.55		89	9.1	26	< 0.1-62	29
Selenium	-			9.7 J	1.0 J	20	V0.1-02	29
Silver	-	-		20.2	2.1			
Zinc	7.0 B	104 B		2550	260	1200	165-3370	33

Table 23. (Continued) - SRD, 1989.

Sample:			Duvall Effluen	t		Freshwater Tox.	Crit. (EPA, 1986b)
Lab Log #: Type: Date: Time:	338410 Grab 8/15 1105	338412 Grab 8/15 1540				Acute	Chronic
% Solids TOC (% dry wt basis) VOA Compounds Methylene Chloride Acetone	(μg/ L) - -	(μg/L) - -				(μg/L)	(μg/ L)
Chloroform 1,1,1-Trichloroethane Toluene	2 J - -	2 J - -				28900 *	1240 *
Lab Log #: Type: Date:	338405 ECO-Comp 8/15-16						
Cyanide (µg/L) BNA Compounds Phenol	(μg/ L) 5					22	5.2
Benzyl Alcohol 4-Methylphenol Benzoic Acid Di-n-Butyl Phthalate Butylbenxylphthalate Bis(2-Ethylhexyl)phthalate Total Phthalate Esters	- - 15 B - 8 J 23 **					940 *	3 *
Lab Log #: Type: Date:	338405 ECO-Comp 8/15-16	308094 ECO-Comp 7/25-26	368248 ECO-Comp 9/5-6	398191 ECO-Comp 9/26-27	398194 ECO-Comp 9/26-27		
Metals Arsenic Cadmium	(μg/L) 1.7 R	(μg/ L) - -	(μg/L) - -	(μg/L) - -	(μg/L) - -	850(360) * +	48(190) *+
Chromium Copper Lead Mercury	23 4.3 B 0.22	15 3.6 B 0.42	26 3.9 B 0.10	28 3.9 B 0.25	28 3.6 B 0.29	7 + 25 + 2.4	5 + 1.0 + 0.012
Nickel Selenium Silver Zinc	1.7 52.2 B	- - 66.7 B	- - - 82.2	4.5 105	3.8 114	0.8 + 53 +	0.12 48 +

- + calculation based on hardness (39 mg/L).
- ++ 0.66% solids were found in the organics sample used for dry weight calculations of organics.
 0.98% solids were found in the TOC sample used for dry weight calculations of metals.
 - insufficient data to develop criteria Lowest Observed Effect Level (LOEL) presented.
 - ** qualifiers have been dropped.
- *** summary of data collected during previous Class II Inspections statewide at activated sludge plants (Hallinan, 1988).
- *+ Pent(Tri) Pent is LOEL
- B This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination.
- J Indicates an estimated value when result is less than specified detection limit.
- R low spike recovery result may be biased low.

Table 24. Duvall STP - Effluent Bioassay Results - SRD, 1989.

Rainbow Trout (Oncorhynchus mykiss) - 96 hour survival test

ınt val	
Percent Survival	100 100 100 100 50 0
Percent Mortality	0 0 0 0 50 100 effluent
# Survived	20 20 20 20 20 10 0
# Tested	20 20 20 20 20 20 10 11 CS
	Effluent Effluent Effluent Effluent Effluent
Sample	Control 6.25 % 12.5 % 25.0 % 50.0 % 100 %

Ceriodaphnia dubia - 48 hour survival and 7 day reproduction test

days	Percent Mean # Young per Survival Original Female	28.5					0.42	25% effluent	50% effluent
after 7 days	Percent Survival	80	90	100	80	100	70	= C	= C
	Percent Mortality	20	10	0	20	0	30	NOEC	LOEC
	# Survived	∞	6	10	∞	10	7		
<u>10urs</u>	Percent Percent MortalitySurvival	80	100	100	80		08	6	
after 48 hours	Percer Mortali	20	0	0	20	0	20	> 100%	
af	# Survived	∞	10	10	8	10	∞	48 hr LC ₅₀ >	
	# Tested	10	10	10	10	10	10	7	
	Sample	Control	6.25 % Effluent	12.5 % Effluent	25.0 % Effluent	50.0 % Effluent	100 % Effluent		

Table 24. (Continued) - SRD, 1989.

Fathead Minnow (Pimephales promelas) - 96 hour survival and 7 day growth test

	Mean Weight per Fish (mg)	0.27	0.34	0.38	0.34	0.31	Y /Z	50% effluent 100% effluent
after 7 days	Percent Survival	77	<i>L</i> 9	83	93	<i>L</i> 9		NOEC = 50% LOEC = 100%
	Percent Mortality	23	33	17	7	33	26	
	# Survived	23	20	25	28	20	_	
હા	Percent Survival	77	11	06	100	11	10	effluent
fter 96 hours	Percent Percent Mortality Survival	23	23	10	0	23	06	3.0 = 62% effluen
<u>I</u> B	# Survived	23	23	27	30	23	ო	96 hr LC
	# Tested	30	30	30	30	30	30)
	Sample	Control	6.25 % Effluent	12.5 % Effluent	25.0 % Effluent	50.0 % Effluent	100 % Effluent	

NOEC - no observable effects concentration

LOEC - lowest observable effects concentration

LC₉₀ - lethal concentration for 50% of the organisms

EC₉₀ - effect concentration for 50% of the organisms

Table 25. Duvall STP-Split Sample Results Comparison - SRD, 1989.

		Lab Log-: Numbers:	338401 338402	338403	338404 338405	338406	368252
		Sample: Date:	ECO-Inf 8/15-16	STP-Inf 8/15-16	ECO- Ef 8/15-16	STP-Ef 8/15-16	Effluent 9/5
Parameter	Laboratory	Time: Type:	1200-1200 Composite	1200-1200 Composite	1200-1200 Composite	1200-1200 Composite	1130 Grab
Total Chlorine Residual (mg/L)	Ecology Duvall						0.6
TSS (mg/L)	Ecology Duvall		180 181	150 154	54 49	47 50	
BOD ₅ (mg/L)	Ecology Duvall		LAC 327	240J 321	LAC 36	38J 63	
Fecal Coliform (#/100mL)	Ecology Duvall						24000JL 1800

J estimated value
L plate count greater than 200
LAC laboratory accident

SETTING

The Weyerhaeuser log pond is roughly circular with a large island in the center occupying two-thirds or more of the roughly 150 acre pond site. The pond is not being used by Weyco in the production process (Proffitt, 1990). Stormwater runoff from Weyco is discharged through the pond into the Snoqualmie River. The study period was fairly dry so pond discharge was minimal. Discharge that did occur went into a swampy area between the pond and the river. Samples collected, sampling times, and parameters analyzed are summarized in Table 26.

RESULTS AND DISCUSSION

Flow Measurement

The weir installed at the pond discharge structure was too large to measure inspection flows. The discharge was seeping through small leaks in the discharge structure and/or trickling over the weir. Visual estimates of the flow rates are provided in Table 27. Estimates ranged between 2 and 10 gpm.

Chemistry Results/NPDES Permit Compliance

The discharge water quality was good during the inspections (Table 28). BOD₅, TSS, nutrient, fecal coliform, and metals concentrations were low. All NPDES permit parameters were well within limits, in part reflecting low summer flow conditions being compared to stormwater runoff permit limits (Table 29).

Sample Splits

Weyco analyzed sample splits for most of the parameters analyzed by Ecology. Split sample results were comparable (Table 30).

RECOMMENDATIONS AND CONCLUSIONS

Water of good quality was discharged in small quantities from the Weyco log pond. Wet weather sampling would be necessary to fully evaluate permit compliance.

Table 26. Weyerhaeuser Log Pond Sample Collection - SRD, 1989.

		97-547	96-			8/15-16	-16			/6	9-5/6			9/2	9/26-27	
Lab Log-:	308098	308099		308097	338423	338424		338418	368254	368255		368249	398184	398185		398192
Numbers:	3		8	, CO	100	T.00	ta ODa tempa	ECO Ef	Effluent		Effluent	Effluent Effluent ECO. Ef	Ffflient	Effluent	Effluent	ECO- Ef
Sample:	Effluent	2736	705 705 36	27.5.75		E.I.Iucili 8/15	8/16	8/15-16	9/6		9/6	9/2-6	9/26	9/56	7276	9/26-27
Date:	311		07//	07-6711	1001	1,00	2 5	01-01-0	26.80	1510	0880	*	0000	1355	0040	٠
Time:	1005	1500			1003	1470		•	0043	0161	200	. (3 -	1000		
Type:	Grab	Grab	Grab	Composite	Grab	Grab		Composite	Grab	Grab	Grab	Composite	ge 5	OETO	ge l	Composite
Field Analyses												!	1	(ſ	;
Hd	щ	闰	Ш	щ	ш	щ	Щ	ш	ш	ш	щ	щ	ш	II)	n) I	T) I
Temperature	田	щ	ш	Э	ы	ш	ш	щ	ш	ш	щ	Щ	Ħ	щ	щ	ш) :
Conductivity	田	ш	田	田	ш	щ	ы	Э	щ	ш	ш	田	щ	щ	m	ш
Chlorine Residual																
Total					щ											
Laboratory Analyses												į				
Turbidity				ш				EW				EW				EW
Conductivity				Э				EW				ΕW				EW
Alkalinity				ъ				EW				EW				ΕW
Hardness				田				EW				EW				ΕW
Chloride				ш				EW				EW				EW
Cyanide																i
TS				Э				EW				EW				ΕW
TNVS				щ				EW				EW				ΕW
TSS				щ				EW				EW				EW
TNVSS				Щ				EW				EW				ΕW
BOD,				щ				EW				EW				EW
Inhib. BOD,																
COD				田				EW				EW				ΕW
TOC																
N-'HN				щ				EW				ΕW				ΕW
NO,+NO,-N				Щ				EW				EW				ΕW
Total-P				щ				EW				EW				EW
Ortho-P				щ				EW				EW				EW
% Solids																
Fecal Coliform	ш	ш			Э	ш			щ	ш			ш	ш		
pp metals				Э				EW				EW				ΕW
***************************************															- www.	

composite was made by mixing equal volumes of the three grab samples. Ecology laboratory analysis Weyerhaeuser laboratory analysis * щ≯

Table 27. Weyerhaeuser Log Pond Flow Estimates - SRD, 1989.

Effluent Flow Estimates *

Date	(gpm)	(gpd)
7/25-26	10	14400
8/15-16	2	2880
9/5-6	4	5760
9/26-27	2	2880

^{*} Discharge during the inspections occurred as seepage around the discharge weir and the flow rate could only be estimated.

Table 28. Weyerhaeuser Log Pond - Ecology Laboratory Results - SRD, 1989.

	398192 ECO. Ef	9/26-27	٠	Composite	7.4	8.4	147				1.5	153	61	80 (8.3	130	130		7 -	- v		00	ì	80.0	0.01	80.0	0.01														1.0 U	- 1
.27	E (filment	9/27	0940	Grab	7.5	17.4	146																																			
9/26-27	398185	9/26	1355	Grab	7.1	18.5	146																					V	0													
	398184	9/26	0060	Grab	7.2	17.7	138																					,	ń													
	368249	9/5-6	*	Composite	7.3	7.3	138				4.	147	25	28	7.3	1 631	100	0/		5 -		,	ì	0.04	0.02	0.05	0.0). U											1.0 U	- 1
9	0.00	9/6	0820	Grab	7.3	18.4	148																																			
9/2-6	368255	Effluent 9/5	1510	Grab	7.3	21.3	143	2																					3 C													
	368254	Effluent 9/5	0845	Grab	7.1	18.9	135) •																				;	4													
	338418	ECO- E1 8/15-16	•	Composite	7.1	10.3	142	<u>!</u>			1.7	145	57	2 6	7.0	•	170	3	.) <u>-</u>	→	ç	777	0.02 J	< 0.01	0.05 J	< 0.01 J			3.0											2.0 U	
16		Effluent 8/16	1000		7.2	10.0	145	Ŷ.																																		
8/15-16	338424	Effluent 8/15	1420	Grab	0 4	21.5	143	Ì																				•	×													
	338423	Effluent 8/15	1005	Grab	7.0	20.7	147	Ì	< 0.1																			•	•													
	308097	ECO- Ef 7/25-26	*	Composite	7.5	12.0	143	Ĉ.			1.5	138	59	54	7.1		90;	62	ъ.		4 4	ř	1,	0.17	< 0.02	90.0	0.26 J			2.0 U												23.3 B
90		Effluent 7/26	1105	Grab	7.5	0.40	152	CCI																																		
90-501	308099	Effluent	1500	Grab	1.1). 0 \$0	0.67	0+1																					33													
	308088	Effluent	1005	Grab	3,5	٠,٠	16.3	101																					11													
	Lab Log #:	Sample: Date:	Time.	Type:	Field Analyses	ph (5.0.)	temperature (C)	Chloring Residual (mg/L)	Total	Laboratory Analyses	Turbidity (NTU)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO ₃)	Chloride (mg/L)	Cyanide $(\mu g/L)$	TS (mg/L)	TNVS (mg/L)	TSS (mg/L)	TNVSS (mg/L)	BOD _s (mg/L)	Inhib. BOD ₅ (mg/L)	COD (mg/L)	NH:-N (mg/L)	NO, + NO,-N (mg/L)	Total-P (mg/L)	Ortho-P (mg/L)	% Solids	Fecal Coliform (#/100mL)	Antimony (µg/L)	Arsenic (µg/L)	Beryllium (µg/L)	Cadmium $(\mu g/L)$	Chromium (µg/L)	Copper $(\mu g/L)$	Lead (µg/L)	Mercury (µg/L)	Nickel (µg/L)	Selenium (µg/L)	Silver (µg/L)	Thallium (µg/L)	Zinc (µg/L)

[•] composite was made by mixing equal volumes of the three grab samples.
•• high value likely due to sampling or sample container contamination.
J indicates estimated value.
J indicates estimated value.
U indicates compound was analyzed for but not detected at the given detection limit.
D indicates compound was analyzed for but not detected at the given detection limit, and the internal standard on which detection limit quantification was based was outside acceptance limits.
R iow spike recovery - result may be biased low.
H - compound analyzied after acceptable holding time had passed.
UH - comments U + H

Table 29. Weyerhaueser Log Pond - Comparison of Inspection Results with NPDES Permit Limits - SRD, 1989.

	NPDES Permit Limits	7/24-25 Ecology	8/15-16 Ecology	9/5-6 Ecology	9/26-27 Ecology
Parameter *	Daily Maximum	Samples	Samples	Samples	Samples
BOD ₅ (mg/L) (lbs/D)	20 228	4 JU 1 U	4 JU 1 U	4 JU 1 U	6 JU 1 U
TSS (mg/L) (lbs/D)	110 1585	9 1	4 1 U	3 <i>J</i> 1 U	1 U 1 U
pH (S.U.)	shall not be outside the range 6.0 - 9.0	7.5,7.7,7.5	7.0,6.9,7.2	7.1,7.3,7.3	7.2,7.1, 7.5
Flow (MGD)	1.728	0.0144	0.0029	0.0058	0.0029

^{*} Ecology analytical results - composite samples for BOD₅ and TSS grab samples for pH
J estimated

U less than

JU comments J + U

Table 30. Weyerhaeuser Log Pond - Split Sample Results Comparison - SRD, 1989.

Lab Log #:	338418		368249		398192	
Sample:	ECO- Ef					
Date:	8/15-16	8/15-16	9/5-6	9/5-6	9/26-27	9/26-27
Time:	*	* .	*	*	*	*
Type:	Composite	Composite	Composite	Composite	Composite	Composite
Lab:	Ecology	Weyco	Ecology	Weyco	Ecology	Weyco
Laboratory Analyses						
Turbidity (NTU)	1.7	2.3	1.4	1.4	1.5	2.4
Conductivity (umhos/cm)	145	160	147	160	153	160
Alkalinity (mg/L CaCO ₃)	57	58	62	60	61	60
Hardness (mg/L CaCO ₃)	56	52.4	58	54.0	58	53.3
Chloride (mg/L)	7.0	7.2	7.3	7.2	8.3	8.2
TS (mg/L)	120	120	153 J		130	120
TNVS (mg/L)	60	79	78 J		78	60
TSS (mg/L)	4	4	3 J		1 U	5
TNVSS (mg/L)	1 U	2	1 U		1 U	< 1
BOD ₅ (mg/L)	<4 J	<3	<4 J		<6 J	< 3
COD (mg/L)	22	12	23	19	20	22
$NH_3-N (mg/L)$	0.02 J	< 0.02	0.04	0.03	0.08	< 0.02
$NO_3 + NO_2 - N (mg/L)$	<0.01 J	< 0.05	0.02	< 0.05	0.01	< 0.05
Total-P (mg/L)	0.05 J	0.04	0.05	0.04	0.08	0.05
Ortho-P (mg/L)	<0.01 J	0.05	0.05	0.02	0.01	< 0.01
Antimony (µg/L)	3.0 U	< 50	3.0 T	U <50	3.0 U	< 50
Arsenic (µg/L)	2.9 R	3	1.8 H	R 2	1.9 R	4
Beryllium (μg/L)	2.0 U	< 10	2.0 U	U < 10	2.0 U	< 10
Cadmium (µg/L)	5.0 U	< 10	5.0 T	U <10	5.0 U	< 10
Chromium $(\mu g/L)$	5.0 U	< 10	5.0 T	U <10	5.0 U	< 10
Copper (µg/L)	4.0 U	< 10	4.0 U	U 28 +	4.0 U	< 10
Lead (μg/L)	1.0 U	< 2	1.0 U		1.0 U	< 2
Mercury (μg/L)	0.06 U	< 0.2	0.02 T		0.06 U	< 0.2
Nickel (μg/L)	20 U	< 30	20 U	U <30	20 U	< 30
Selenium (µg/L)	2.0 U	< 2	2.0 U	U <2	2.0 U	< 2
Silver (µg/L)	0.50 U	< 10	0.50 U		0.50 U	< 10
Thallium (µg/L)	2.0 U	< 2	1.0 U		1.0 U	< 2
Zinc (µg/L)	8.0 B	< 10	1310	** 11 +	3.8 B	< 10

^{*} composite was made by mixing equal volumes of the three grab samples.

^{**} high value likely due to sampling or sample container contamination.

⁺ result of duplicate analysis was < 10

UJ indicates compound was analyzed for but not detected at the given detection limit, and the internal standard on which detection limit quantification was based was outside acceptance limits.

U indicates compound was analyzed for but not detected at the given detection limit.

J indicates an estimated value.

R low spike recovery - result may be biased low

B This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination

H compound analyzied after acceptable holding time had passed.

UH comments U + H

REFERENCES

- APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.
- Ecology. Department of Ecology Laboratory Users Manual, 1988.
- ----. Manchester Laboratory Price List, June 15, 1989.
- EPA. Methods for Chemical Analysis of Water and Wastes, 600/4/79-020, revised March 1983.
- ----. 40 CFR Part 136, October 26, 1984.
- ----. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms, EPA/600/4-85/013, 1985a.
- ----. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, EPA/600/4-85/014, 1985b.
- ----. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, 3rd ed., November 1986a.
- ----. Quality Criteria for Water, EPA 440/5-86-001, 1986b.
- Hallinan, Pat. Metals Concentrations Found During Ecology Inspections of Municipal Wastewater Treatment Plants, April 11, 1988, memo to John Bernhardt.
- Joy, Joe, G. Pelletier, R. Willms, M. Heffner, E. Aroner. <u>Snoqualmie River Low-Flow Water Quality Assessment</u>, July-September 1989, in preparation.
- Proffitt, Russ. Weyerhaeuser Snoqualmie Mill Plant Safety Coordinator, personal communication, 1990.
- Tetra Tech. <u>Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound</u>, Prepared for Puget Sound Estuary Program, 1986.

Appendix A. Results of VOA, BNA, Pest/PCB and Metal Priority Pollutant Scans of Water Samples - SRD 1989.

		`													
Sample:	Transfer	North Bend Influent	d Influent	North Bend	d Effluent	Transfer	Duvall Influent	nfluent	Duvall Effluent	Mucnt	Transfer	Snoqualmic Influent	Influent	Snoqualmic Effluent	Effluent
	Blank	300000	700000	208087	308088	Blank 138425	338407	138408	338410	338412	51ank 368231	368238	368239	368241	368243
Lab Log #:	308080	308083	Sususo	30000	Justos	2001	Grab	Grab	Grab	Grab		Grab	Grab	Grab	Grab
Dete	7/25	7/25	7/25	7/25	7/25	8/15	8/15	8/15	8/15	8/15	5/6	8/6	5/6	8//8	8/8
Time:	0835	0945	1420	0630	1430	1140	1125	1600	1105	1540	0910	0820	1350	1005	1415
(B-1) - 1															
VOA Compounds (4g/L)	10 11	10 11	10 11	10 11	10 U		10 U	10 U	10 U				10 U	10 U	S0 U
Resemblishers				10 U	10 U		10 U							10 U	D :
Visul Charide				10 U	10 U		10 U								30 U
Chloroethane				10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	۵ ک
Methylene Chloride	5 U	S U	5 U	5 U	5 U		5 U								55
Actione		901	200	10 U			10 U							265 IG :	860 J
Carbon Disulfide	5 U	5 U	5 U	S U	5 U	2 U	2 U		S U	s u	5 U		2 C	2 2	o :
1.1-Dichloroethene		5 U	5 U	5 U			5 U		S U						25 U
1.1-Dichloroethane	5 U	S U	5 U	5 U	5 U	S U	S U		5 U				5 U		25 U
1 2-Dichlomethene (total)	5 U	5 U	5 U	S U			S U	5 U	5 U						25 U
Chloroform				5 U	2 J		==	12							ر و
2-Butanone		10 U	10 U	10 U		10 U	10 U					10 U		10 U	D :
1.2-Dichloroethane	S U	5 U	5 U	5 U	5 U		5 U								25 U
1 1-Trichloroethane	s U		5 U	5 U	S U		S U								25 U
Carbon Tetrachloride	5 U		5 U	5 U	5 U	3 U	5 U	S U	5 U		S U	S U		2 C	25 U
Vinvl Acetate	10 U		10 U	10 U			10 U) S
Bromodichloromethane	5 U	S U	S U	-	8	S U	S U		5 U	S U	5 U	S U	5 U	5 U	25 0
1.2-Dichloropropane	s u	5 U	5 U	5 U	5 U		5 U	2 U							25 U
Trichloroethene				5 U	5 U		S U								25 U
Benzene			5 U	5 U	S U		5 U		5 U						25 U
Dibromochloromethane	5 U	5 U	S U	5 U	9		S U								25 U
1,1,2-Trichlorocthane	5 U	S U	5 U	S U	5 U		5 U	5 U	5 U					S	25 U
Вготобогт	5 U	S U	5 U	2 U			SU								25 0
4-Methyl-2-Pentanone	10 U	10 U		10 U	10 U		10 U	10 U	10 U	10 OI		10 U			⊃ ; ? ;
2-Hexanone	10 U	10 U	10 U	10 U			10 N		10 U					0 01	⊃ ;
1,1,2,2-Tetrachloroethane	5 U	S U	5 U		S U		\$ N								25 0
Tetrachloroethene	S U	S	7	5 U	5 U		S U	5 U							25 0
Toluene	s u	2 J	2 J	2 J	2 U		5 U								25 U
Chlorobenzene	5 U	5 U	5 U	s u	5 U		5 U		5 U	5 U					25 U
trans-1,3-Dichloropropene	SU	5 U	5 U	S U	5 U	S U	S U	5 U							25 U
Ethylbenzene	S U.	5 U	5 U	5 U	S U	5 U	5 U	5 U	S U	2 U	5 U	5 U	s U	5 U	25 U
cis-1,3-Dichloropropene	s u	5 U	5 U	SU	S U	5 U	5 U	5 U	5 U	5 U	5 U			S U	25 U
Styrene	s U	5 U	5 U	S U	S U	2 U	5 U	2 U	S U	5 U	5 U		?	s U	25 U
Total Xylenes	S U	S U	5 U	5 U	S U	s u		S U	S U	S U	5 U		7	2 O	25 U
2-Chloroethylvinylether															

Appendix A. (Continued) - SRD, 1989.

Date:	Sample: Lab Log #: Type:	T Blank 308080	NB Influent 308081 ECO-Comp	NB Effluent 308083 ECO-Comp	T Blank 338425	Duv Influent 338402 ECO-Comp	Duv Effluent 338405 ECO-Comp 8/15/16	T Blank 368231 9/5	Snoq Influent 368233 ECO-Comp 9/5-6	Snoq Effluent 368235 ECO-Comp 9/5-6
10 U 10 U		11.63	07-6711	04-04-0						
10 10 10 10 10 10 10 10	Phenol					4 J				
10 10 10 10 10 10 10 10	Amiline Bis(2-Chloroethyl)Ether									
The control of the	2-Chlorophenol									
10 U 2 J 10 U 1	1,3-Dichlorobenzene									
10 U 10 U	1,4-Dichlorobenzene		2 J						3 1	
The company of the	Benzyl Alcohol		f 6							
reptylether 10 U	1,2-Dichlorobenzene									
Propylamine 10 U 44 10 10 U 10 U 10 U 10 U 10 U 10	2-Methylphenol		10 0							
Propylamine 10 U	Bis(2-chloroisopropyi)ciner									
10	N-Nitmoo-Di-n-Pronvlamine									
10 U 10 U	Hexachloroethane									
10 U 10 U	Nitrobenzene							10 U		
10 to 10 t	Isophorone									
10 U 10 U	2-Nitrophenol									
so U 15 J 50 U 50 U 662 50 U 60 U 10 U	2.4-Dimethylphenol									
Columbia 10 to 1	Benzoic Acid					148			62	
10 U 10 U	Bis(2-Chloroethoxy)Methane			10 U						
10 10 10 10 10 10 10 10	2,4-Dichlorophenol									
10 U 10 U 2 UJ 10 U	1,2,4-Trichlorobenzene									
10 U 10 U	Naphthalene									
10 U 10 U	4-Chloroaniline									
diene 10 U 10 U <t< th=""><th>Hexachlorobutadiene</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Hexachlorobutadiene									
diene 10 U 10 U <t< th=""><th>4-Chloro-3-Methylphenol</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	4-Chloro-3-Methylphenol									
diene 10 U 10 U <t< th=""><th>2-Methylnaphthalene</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	2-Methylnaphthalene									
10 U 10 U <td< th=""><th>Hexachlorocyclopentadiene</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Hexachlorocyclopentadiene									
50 U 50 U <th< th=""><th>2,4,6-Trichlorophenol</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	2,4,6-Trichlorophenol									
10 U 10 U <td< th=""><th>2,4,5-Trichlorophenol</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	2,4,5-Trichlorophenol									
50 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 50 U 1 J 10 U 11 J 10 U	2-Chloronaphthalene									
name 10 U 10 U 10 U 10 U 10 U 10 U 11 U 10 U <th< th=""><th>2-Nitroaniline</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	2-Nitroaniline									
10 U 10 U <th< th=""><th>Dimethyl Phthalate</th><th></th><th></th><th></th><th></th><th>10 U</th><th></th><th></th><th>1</th><th></th></th<>	Dimethyl Phthalate					10 U			1	
50 U 50 U	Acenaphthylene									
10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	3-Nitroaniline									
	Acenaphthene								10 U	

Appendix A. (Continued) - srD, 1989.

Sample:	T Blank	NB Influent	NB Effiuent	T Blank	Duv Influent	Duv Effluent 338405	T Blank 368231	Snoq Influent 368233	Snog Effluent 368235
Type:	200000	ECO-Come	ECO-Comp		ECO-Comp	ECO-Comp		ECO-Comp	ECO-Comp
Date:	7/25	7/25-26	7/25-26	8/15	8/15-16	8/15-16	9/5	9/5-6	9/5-6
BNA Compounds (4g/L)	S0 U	50 U	50 U	S0 U	S0 U	S0 U	50 U		
4. Nitrophenol				50 U					
Dibenzofuran	10 U			10 U	10 U		10 U	10 U	10 U
2.4-Dinitrotoluene		10 U				10 U			
2.6-Dinitrotoluene	10 U	10 U	10 U	10 U					
Diethyl Phthalate	10 U	6 J					10 U		
4-Chlorophenyl-Phenylether		10 U	10 U	10 U				10 U	
Fluorene	10 U	10 U	10 U			10 U			
4-Nitroaniline		S0 U	50 U	50 U		S0 U	50 U		
4.6-Dinitro-2-Methylphenol	S0 ·U	50 U	S0 U			S0 U			
N-Nitrosodiphenylamine	10 U	10 U						10 U	
1,2-Diphenylhydrazine									
4-Bromophenyl-Phenylether	10 U	10 U	10 U						
Hexachlorobenzene	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	S0 U	S0 U	S0 U			20 U			
Phenanthrene	10 U	10 U		10 U					
Anthracene		10 U	10 U						
Di-n-Butyl Phthalate	10 U	2 J	10 U	32 B					
Fluoranthene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Pyrene	10 U	10 U	10 U						
Benzidine									
Butylbenxylphthalate		4 J		10 U	6 J	D 01	7 01	12 UJ	
3,3'-Dichlorobenzidine	20 U	20 U							
Benzo(a) Anthracene	10 U	10 U			10 U			10 U	D 01
Chrysene	10 U	10 U	10 U	10 U					
Bis(2-Ethylhexyl)phthalate		25		1 1	32			27	
Di-n-Octyl Phthalate		1 1	10 U		3 m	10 U	10 U	2 J	
Benzo(b)Fluoranthene	10 U	10 U	10 U		10 U				
Benzo(k)Fluoranthene		10 U					10 U	10 U	
Benzo(a)Pyrene		10 U	10 U				10 U	10 U	10 U
Indeno(1,2,3-cd)Pyrene	10 U	10 U	10 U	10 U					
Dibenzo(a,h)Anthracene			10 U	10 U	10 U			10 U	10 U
Benzo(g,h,i)Perylene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		

Appendix A. (Continued) - srp, 1989.

Sample:	T Blank	0 1 01.			£	1 8		San Influence	Sport Efflient
	308080	NB Influent 308081	NB Effluent 308083	T Blank 338425	338402	Duv Effluent 338405	T Blank 368231	368233	368235
Type: Date:	7/25	ECO-Comp 7/25-26	ECO-Comp 7/25-26	8/15	ECO-Comp 8/15-16	ECO-Comp 8/15-16	5/6	ECO-Comp 9/5-6	ECO-Comp 9/5-6
Poet/PCR Commoninds (ug/L.)									
alpha-BHC	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
beta-BHC	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
delta-BHC	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
gamma-BHC (Lindane)	0.05 U	0.01 J	0.27	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
Heptachlor	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aldrin	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Heptachlor Epoxide	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Endosulfan I	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Dieldrin	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
4,4'-DDE	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Endrin	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Endosulfan II	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
4,4'-DDD	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Endosulfan Sulfate	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
4,4'-DDT	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.065 J	0.10 U
Methoxychlor	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Endrin Ketone	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
alpha-Chlordane	0.50 U	0.50 U	0.092 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
gamma-Chlordane	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Toxaphene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor-1016	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Aroclor-1221	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Aroclor-1232	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Aroclor-1242	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Aroclor-1248	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Aroclor-1254	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Aroclor-1260	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Endrin Aldehyde									

Appendix A. (Continued) - srp, 1989.

Sample: Lab Log #: Type: Date:	T Blank 308080 7/25	NB Influent 308081 ECO-Comp 7/25-26	NB Effluent 308083 ECO-Comp 7/25-26	T Blank 338425 8/15	Duv Influent 338402 ECO-Comp 8/15-16	Duv Effluent 338405 ECO-Comp 8/15-16	T Blank 368231 9/5	Snoq Influent 368233 ECO-Comp 9/5-6	Snoq Effluent 368235 ECO-Comp 9/5-6
Priority pollutant metals (µg/L)									
Antimony	2.0 U	2.0 U	2.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U
Arsenic	1.0 U	3.8	4.2	1.0 UR	1.9 R	1.7 R	1.0 UR	1.0 UR	1.0 UR
Beryllium	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cadmium	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chromium	5.0 U	5.0 U	5.0 U	5.0 U	5.0	5.0 U	5.0 U	12	S.0 U
Copper	4.0 U	40.2	4.0 U	4.0 U	52.1	23	4.0 U	136	20
Lead	1.0 U	5.4 B	5.7 B	12.9	10 B	4.3 B	1.0 U	10.1 B	2.9 B
Mercury	0.06 U	0.17	0.06 U	0.06 U	0.33	0.22	0.06 U	0.08	0.06 U
Nickel	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Selenium	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Silver	0.50 U	1.0	0.50 U	0.50 U	0.50 U	1.7	0.50 U	0.50 U	0.50 U
Thallium	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U
Zinc	40.6 B	120 B	95.1 B	7.0 B	104 B	52.2 B	4.9 B	134 B	30.4 B
*	The same of the sa	The second secon	The state of the s						

U indicates compound was analyzed for but not detected at the given detection limit.

indicates an estimated value when result is less than specified detection limit.

This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination. B

D value from analysis of a diluted sample.

indicates compound was analyzed for but not detected at the given detection limit, and the internal standard on which detection limit quantification was based was outside acceptance limits. IJ

DJ comment D plus comment J.

R low spike recovery - result may be biased low.

indicates compound was analyzed for but not detected at the given detection limit, and the spike recovery was low so the actual detection limit may be higher. UR

Appendix B. Tentatively Identified Compounds (TICs) in the VOA and BNA Scans of Water Samples - SRD, 1989.

									-				
	Sample	North Ber	North Bend Influent	North Bend Effluent	ffluent	Duvall Influent		Duvall Effluent	ent	Snoqualmie Influent	Influent	Snoqualmie Effluent	Effluent
	combine:						•						
	Lab Log #:	308085	308086		308088			_	338412	368238	368239	368241	368243
	Type: Date: Time:	Grab 7/25 0945	Grab 7/25 1420	Grab 7/25 0930	Grab 7/25 1430	Grab 8/15 1125	Grab 8/15 1600	8/15 1105	8/15 1540	9/5 0260	9/5 1350	9/5 1005	9/5 1415
		╀											
Compound	Ketention Time												
VOA Scan (µg/L)													
Ethanol	7.08										24 J		
Ethanol	7.10	ţ	30 1						* *****				
Ethanol	7.12	7/5					5 J						
Cincole	29.81		6 J		···········								
Unknown Hydrocarbon C10H16	30.86										:	13 J	
Unknown Hydrocarbon C10H16	30.89				- Aufa Million				NOAMMA		ر 44		
Unknown	31.39			- <			<u>.</u>						
Unknown	77.75			٠, در			•						
Cyclobexene, 1-methyl-4-	14.76	~		, ,,									
Unknown	32.82		f 9										
					1				+				
	Sample:	E S	NB Influent	NB Effluent	in .	Duv Influent	ent	Duv Effluent	uent	Snoq Influent	luent	Snoq Effluent	fluent
	Lab Log #: Type: Date:		308081 ECO-Comp 7/25-26	308083 ECO-Comp 7/25-26	er.	338#02 ECO-Comp 8/15-16	du .	536403 ECO-Comp 8/15-16	dmo 19	ECO-Comp 9/5-6	omp 6	ECO-Comp 9/5-6	duo 9
	4				<u> </u>								
Compound	Time												
BNA Scan (µg/L)													
Ethenol J. hutowy.	05 01		£ ~										
Unknown	15.70		17 J						CONTRACTOR				
Unknown	15.89		23 J										
Decanoic Acid	18.81 20.05	····	58 5										
Cyclopropane, nonyl- Dodecanamide, N. N-bis(2-hydroxyethyl)			 										
Unknown Alkane	21.45		36 J		-								
					1				-				

Appendix B. (Continued) - SRD, 1989.

	Sample: Lab Log #: Type: Date:	NB Influent 308081 ECO-Comp 7/25-26	NB Effluent 308083 ECO-Comp 7/25-26	Duv Influent 338402 EC0-Comp 8/15-16	Duv Effluent 338405 ECO-Comp 8/15-16	Snoq Influent 368233 ECO-Comp 9/5-6	Snoq Effluent 368235 ECO-Comp 9/5-6
Compound	Retention Time				g garger and the common of the		
BNA Scan (µg/L)							
Ovelotetradecane	22.74	37 J			***************************************		
Tetradecanoic Acid	23.55	33 J					
1-Tetradecanol	23.99	19 J					
Caffeine	24.94	36 J					
Unknown Alkane	25.14	38 J					
Unknown	75.66	7 5					
Hexadecanoic Acid	27.29	8 5					
Unknown	35.32	. 7					
Unknown	42.21	33 J					
Unknown	43.48	70 J					
Unknown	45.43	20 J			***************************************		
Unknown	49.33	21 J					
Unknown	10.69		% BG %				
Ethanol, 1-(2-butoxyethoxy)	15.69		22 J				
Unknown	18.34		5 1				
Ethanol, 2-butoxy-	9.72			67 J			
Unknown - Trimethyl Octane Isomer	2. 01			21 7			
Octanoic Acid	14.82			21)			
Unknown	15.27			25 1			
Unknown	17.75			25 J			
Unknown Alkane	19.34			21 J			
Unknown	20.49			78 J			
Unknown	21.97			56 J			
Tetradecanoic Acid	22.94			75 J			
Unknown	23.19			35 J			
Caffeine	24.27			23 J			
Unknown	24.32			76 J			
Hexadecanoic Acid	25.17			33 J			
Unknown	26.49						
Unknown Hexanedioic Acid Ester	29.42			250 BJ			
Unknown	33.99			780			

Appendix B. (Continued) - SRD, 1989.

	Sample: Lab Log #: Type: Date:	NB Influent 308081 ECO-Comp 7/25-26	NB Effluent 308083 ECO-Comp 7/25-26	Duv Influent 338402 ECO-Comp 8/15-16	Duv Effluent 338405 ECO-Comp 8/15-16	Snoq Influent 368233 ECO-Comp 9/5-6	Snoq Effluent 368235 ECO-Comp 9/5-6
Compound	Retention Time				entralista en en en en en en en en en en en en en		
BNA Scan (µg/L)							
Unknown	39.67			200 J			
Cholesterol	40.66			210 J			
Unknown Unknown	45.83			100	6 BI		
Unknown	11.65				6 J		
Unknown	11.72				5 J		
Unknown	19.40				Z ;		
Unknown Phihalate	23.53				2 E		
Unknown	33.97				17. J		
Unknown	39.67				20.5		
Unknown	49.64				71.3		
Ethanol, 2-butoxy-	10.22					150 J	
Unknown	15.77					41 J	
Decanoic Acid	18.24					28 J	
Unknown Cycloalkane	19.84				lean acco	48 J	
Unknown					****	28 J	
Dodecanamide, N, N-bis (2-hydroxyethyl)						65 J	
Unknown	22.82					F 69	
Tetradecanoic Acid	23.47					2	
Calleine Pentadecanoic Acid	25.77					98 SE	
Unknown	27.77					320 J	
Unknown	27.94					48 J	
Unknown	34.94					100 J	
Unknown	35.34					48 J	
Unknown	35.79					30.5	
Unknown	37.29					32 J	
Unknown	41.49					250 J	
Unknown	42.59					190 J	
Unknown	44.48					28 J	
Unknown	48.19					68 J	
Olikiowii	07.77		***************************************				4 J

Appendix B. (Continued) - SRD, 1989.

	Sample: Lab Log #: Type: Date:	NB Influent 308081 ECO-Comp 7/25-26	NB Effluent 308083 ECO-Comp 7/25-26	Duv Influent 338402 ECO-Comp 8/15-16	Duv Effluent 338405 ECO-Comp 8/15-16	Snoq Influent 368233 ECO-Comp 9/5-6	Snoq Effluent 368235 ECO-Comp 9/5-6
Compound	Retention Time						
BNA Scan (µg/L)					MASS PROCESSION - 12-2		
Unknown	22.82		····		********		1 9
Unknown	24.34						
Unknown	24.84						
Unknown	26.62						. ~
Phytol	27.34						2
Phosphoric acid, 2-ethylhexy	30.42						, E 2
Unknown	30.86						} ⊢
Unknown Phthalate	31.49						7 ° 7
Unknown	34.89						3
Unknown	35.52						, , v
Unknown	36.54						18 J

J - indicates an estimated value

B - This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination

BJ - B+J

Snoqualmie Sludge 368246 (µg/Kg dry wt) 130 U 1545-1700 Results of VOA, BNA, Pest/PCB and Metal Priority Pollutant Scans of Sludge Samples - SRD, 1989. (μg/Kg dry wt) 2500 U 300 2500 North Bend Sludge 338427 8/16 0845 (µg/Kg dry wt) 1400 710 710 710 710 710 710 710 710 710 1400 1400 710 0 4 4 0 0 0 710 2000 Duvall Sludge 338415 8/16 1205 Sample: Lab Log #: Date: Time: trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane ,2-Dichloroethene (total) cis-1,3-Dichloropropene Dibromochloromethane Total Xylenes 2-Chloroethylvinylether **Bromodichloromethane** TOC (% dry wt basis) VOA Compounds ,1,1-Trichloroethane ,1,2-Trichloroethane 4-Methyl-2-Pentanone Carbon Tetrachloride ,2-Dichloropropane Methylene Chloride 1,1-Dichloroethene 1,1-Dichloroethane ,2-Dichloroethane etrachloroethene Carbon Disulfide Appendix C. richloroethene Chloromethane Chlorobenzene Vinyl Chloride Bromomethane Vinyl Acetate Ethylbenzene Chloroethane 2-Hexanone Chloroform 2-Butanone Bromoform % Solids Benzene oluene Acetone

Snoqualmie Sludge 368246 (µg/Kg dry wt) 8300 U 1545-1700 83300 830000 830000 830000 830000 83000 83000 83000 83000 83000 (µg/Kg dry wt) 660 J 13000 3000 3000 2600 North Bend Sludge 338427 8/16 0845 (µg/Kg dry wt) 2000 500 55000 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 55000 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5 588 200 1500 2000 1500 7600 7600 7600 7600 Duvall Sludge 338415 8/16 1205 (μg/L) 13 Appendix C. (Continued) - SRD, 1989. Sample: Lab Log #: Date: Time: Bis(2-Chloroethoxy)Methane N-Nitrosô-Di-n-Propylamine Hexachlorocyclopentadiene Bis(2-chloroisopropyl)ether 4-Chloro-3-Methylphenol ,2,4-Trichlorobenzene Bis(2-Chloroethyl)Ether 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Hexachlorobutadiene 2-Methylnaphthalene ,4-Dichlorobenzene ,2-Dichlorobenzene ,3-Dichlorobenzene 2-Chloronaphthalene ,4-Dimethylphenol 2,4-Dichlorophenol Dimethyl Phthalate **BNA Compounds** Hexachloroethane 2,4-Dinitrophenol Acenaphthylene 3enzyl Alcohol 4-Chloroaniline 2-Chlorophenol 2-Methylphenol 4-Methylphenol 3-Nitroaniline Acenaphthene 2-Nitroaniline 4-Nitrophenol 2-Nitrophenol Nitrobenzene Benzoic Acid Naphthalene sophorone

Appendix C. (Continued) - SRD, 1989.

Sample: Lab Log #: Date: Time:	Duval 333 8	Duvall Sludge 338415 8/16 1205	North	North Bend Sludge 338427 8/16 0845	Snoqualmie Sludge 368246 9/6 1545-1700
BNA Compounds Dibenzofuran 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl Phthalate 4-Chlorophenyl-Phenylether Fluorene 4,6-Dinitro-2-Methylphenol N-Nitrosodiphenylamine 1,2-Diphenylhydrazine 4-Bromophenyl-Phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butyl Phthalate Fluoranthene Pyrene Benzo(a)Anthracene Chrysene Bis(2-Ethylhexyl)phthalate Bis(2-Ethylhexyl)phthalate Bis(2-Ethylhexyl)phthalate Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(b)Fluoranthene	50 U U U U U U U U U U U U U U U U U U U		(#g/L) 2 J 10 U 10 U 10 U 10 U 5 J 5 O 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	(4g/Kg dry wt) 390 J 2600 U 2600 U 2600 U 2600 U 1200 J 13000 U 13000 U 13000 U 25000 25000 2600 U	8300 U 8300 U 8300 U 8300 U 8300 U 8300 U 8300 U 40000 U 40000 U 8300 U 8300 U 1500 U 1500 U 1500 U 8300 U
Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene	1	1500 U 1500 U 1500 U	2 0 0 0 0 U U U U	2500 U 2600 U 2600 U	8300 U 8300 U 8300 U

Appendix C. (Continued) - SRD, 1989.

North Bend Sludge 338427 368246 8/16 9/6 0845 1545-1700	(µg/Kg dry wt) 13 U 13 U 200 U 13 U 360 D 13 U 200
North J	(#g/L) 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.10 U
Duvall Sludge 338415 8/16 1205	(4g/Kg dry wt) 76 U 76 U 76 U 76 U 76 U 76 U 76 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 760 U
Duvall 338 8	(#g/L) 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 5.0 U 1.0 U
Sample: Lab Log #: Date: Time:	
	Pest/PCB Compounds alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endosulfan II 4,4'-DDD Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone alpha-Chlordane gamma-Chlordane gamma-Chlordane Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1260

Appendix C. (Continued) - SRD, 1989.

Z	Sample: Lab Log #: Date: Time:	Duval 33 8 8	Duvall Sludge 338414 8/16 1205	Non	North Bend Sludge 338426 8/16 0845	Snoqualmie Sludge 368245 9/6 1545-1700
Priority pollutant metals Antimony		$(\mu g/L)$ 12 U	(mg/Kg dry wt)	$(\mu g/L)$ 6.0 U	(mg/Kg dry wt)	(mg/Kg dry wt) 0 0K 111
Arsenic		18.9	6.1	24.8	7.3	40
Beryllium		1.0 U	0.1 U	0.50 U	0.1 U	0.17
Cadmium		23	2.3	16	4.7	. 8,4
Chromium		63	6.4	34	10	42.0
Copper		1320	135	1270	374	637
Lead		180	18	150	44	120
Mercury		17.5	1.8	8.7	2.6	86
Nickel		68	9.1	62	18	21 J
Selenium		9.7 J	1.0 J	6.0 J	1.8 J	0.024
Silver		20.2	2.1	21.3	6.3	54.3
Thallium		4.0 U	0.4 U	2.0 U	0.6 U	0.020 U
Zinc		2550	260	1900	559	1150

0.66% solids were found in the organics sample - used for dry weight calculations of organics. 0.98% solids were found in the TOC sample - used for dry weight calculations of metals. 0.39% solids were found in the organics sample - used for dry weight calculations of organics. 0.34% solids were found in the TOC sample - used for dry weight calculations of metals.

indicates compound was analyzed for but not detected at the given detection limit indicates an estimated value when result is less than specified detection limit. This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination value from analysis of a diluted sample is used was outside indicates compound was analyzed for but not detected at the given detection limit, and the internal standard on which detection limit quantification was based was outside acceptance limits D 2 8 0 5

Appendix D. Tentatively Identified Compounds (TICs) VOA and BNA Scans of Sludge Samples - SRD, 1989.

Appendix D. (Continued) - SRD, 1989.

Sample: Lab Log #: Date: Time:		Duva 33 8 1	Duvall Sludge 338415 8/16 1205	North Be	North Bend Sludge 338427 8/16 0845	Snoqualmie Sludge 368246 9/6 1545-1700
Compound	Retention Time					
BNA Scan	7	$(\mu g/L)$	$(\mu g/Kg dry wt)$	$(\mu g/L)$	$(\mu g/Kg dry wt)$ 2800 J	(µg/Kg dry wt)
Unknown C1Un 10 Unknown C7H5NS	15.92			17 J 42 BJ	4400 J 11000 BJ	
Heptadecane	22.24			19 J 17 J	4900 J 4400 J	
Delizelle, (1-illediyideeyi)- Unknown	22.94			72 J	18000 J 3100 I	
Unknown IInknown Phthalate	24.32			72 BJ	18000 BJ	
Benzenamine, 4-(1-methylethy	24.65			191	4900 J	
Unknown Hexadecanoic Acid	25.04			18 J 340 J	87000 J	
9-Octadecenoic Acid	27.12			g 78	22000 J	
Octadecanoic Acid	27.27			44 J	73000 J	
Unknown Hexanedioic	75.67				•	
Unknown Alkane	30.24			34 J	8700 J 7700 I	
Unknown Alkane Unknown	31.16 34.01			40 y	10000 J	
Unknown	34.37			500 J	130000 J	
Unknown	35.24			210 3	24000 J	
Unknown	46.68 0.64	1 68	4800 1	7 000	14000	
Unknown Hakacam Albana	10.01	36 1	5400 1			ala ada ada ada ada ada ada ada ada ada
Unknown Alkane Unknown Alkane	12.49	50 J	7600 j			
Unknown Alkane	12.84	41 J				agada societa
Unknown	19.47	34 BJ	5200 BJ			
Pentadecane	19.74	32 J	4800 J			
Dodecanamide, N N-bis(2-bydr	70.57	6/6	1 00051	ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA ANNIA A		***************************************
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						

Appendix D. (Continued) - SRD, 1989.

	Duvall 338 8/ 8/ 12	Duvall Sludge 338415 8/16 1205	North Bend Sludge 338427 8/16 0845	Snoqualmie Sludge 368246 9/6 1545-1700
Retention Time				
	$(\mu g/L)$	$(\mu g/Kg dry wt)$	$(\mu g/L)$ $(\mu g/Kg dry wt)$	(µg/Kg dry wt)
	84 1	13000 1		
	110 BJ	17000 BJ		
	2100 J	320000 J		
	- - - -	9100 J		
	460 J	70000 J		****
	51 J	7700 J		, , , , , , , , , , , , , , , , , , ,
	96 BJ	14000 BJ		
	160 J	14000 J		
	41 J	6200 J		
	150 J	23000 J		
	61 J	9200 J		
	91 J	14000 J		

J - indicates an estimated value.

B - This flag is used when the analyte is found in the blank as well as the sample. Indicates possible/probable blank contamination.

BJ - B+J

Laboratory Procedure Review Sheet

Discharger: NORTH BEND

Date: 7/26

Discharger representative: Doug Repp

Boology reviewer: Heffner

Instructions

Questionnaire for use reviewing laboratory procedures. Circled numbers indicate work is needed in that area to bring procedures into compliance with approved techniques. References are sited to help give guidance for making improvements. References sited include:

Ecology = Department of Recology Laboratory User's Manual, December 8, 1986.

SM = APHA-AWWA-WPCF, Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

SSM = WPCF, Simplified Laboratory Procedures for Kastewater Examination, 3rd ed., 1885.

Sample Collection Review

- 1. Are grab, hand composite, or automatic composite samples collected for influent and effluent BOD and TSS analysis?
- 2. If automatic compositor, what type of compositor is used? Marring
 The compositor should have pre and post purge cycles unless it is a flow
 through type. Check if you are unfamiliar with the type being used.
- 3. Are composite samples collected based on time or flow?
- 4. What is the usual day(s) of sample collection? Wed Thurs Fai
- 5. What time does sample collection usually begin? 8-10
- 6. How long does sample collection last? 24 4m
- 7. How often are subsamples that make up the composite collected? how/
- 8. What volume is each subsample? 300 mL
- 9. What is the final volume of sample collected?
- 10. Is the composite cooled during collection? refrigerated

- 11. To what temperature? cool

 The mample should be maintained at approximately 4 degrees C (SM p41, #5b: SSM p2).
- 12. How is the sample cooled?

 Mechanical refrigeration or ice are acceptable. Blue ice or similar products are often inadequate.
- How often is the temperature measured? don't check
 The temperature should be checked at least monthly to assure adequate cooling.
- 14. Are the sampling locations representative? OK
- 15. Are any return lines located upstream of the influent sampling location? 40

 This should be avoided whenever possible.
- 16. How is the sample mixed prior to withdrawal of a subsample for analysis? OK

 The sample should be thoroughly mixed.
- 17. How is the subsample stored prior to analysis? Lested same day

 The sample should be refrigerated (4 degrees C) until about 1 hour
 before analysis, at which time it is allowed to warm to room temperature.

 Should with accessionally
- What is the cleaning frequency of the collection jugs? ninse The jugs should be thoroughly rinsed after each sample is complete and occasionally be washed with a non-phospate detergent.
- How often are the sampler lines cleaned? Flould do Rinsing lines with a chlorine solution every three months or more often where necessary is suggested.

pH Test Review

- 1. How is the pH measured? Asily
 A meter should be used. Use of paper or a colorimetric test is inadequate and those procedures are not listed in Standard Methods (SK p429).
- 2. How often is the meter calibrated? resides in The meter should be calibrated every day it is used.
- 3. What buffers are used for calibration? 7.0 should do 2 pt. Use 7-10
 Two buffers bracketing the pH of the sample being tested should be used.

If the meter can only be calibrated with one buffer, the buffer closest in pH to the sample should be used. A second buffer, which brackets the pH of the sample should be used as a check. If the meter cannot accurately determine the pH of the second buffer, the meter should be repaired.

BOD Test Review

- 1. What reference is used for the BOD test? Simplified have 14 44 Standard Methods or the Ecology handout should be used. Suggest get 17 44
- 2. How often are BODs run? (*/week
 The minimum frequency is specified in the permit.
- 3. How long after sample collection is the test begun? immediate
 The test should begin within 24 hours of composite sample completion
 (Ecology Lab Users Manual p42). Starting the test as soon after samples are complete is desirable.
- 4. Is distilled or deionized water used for preparing dilution water?
- 5. Is the distilled water made with a copper free still? Purchised Copper stills can leave a copper residual in the water which can be toxic to the test (SSM p36).
- 6. Are any nitrification inhibitors used in the test? x. What?
 2-chloro-6(trichloro methyl) pyridine or Hach Nitrification Inhibitor
 2533 may be used only if carbonaceous BODs are being determined (SM p 527,
 #4g: SSM p 37).
- 7. Are the 4 nutrient buffers of powder pillows used to make dilution water?

 Fraction of powder pillows used to make dilution water if the nutrients are used, how much buffer per liter of dilution water are added?

 1 mL per liter should be added (SM p527, #5a: SSM p37).
- 8. How often is the dilution water prepared? weekly
 Dilution water should be made for each set of BODs run.
- 9. Is the dilution water aged prior to use? ""
 Dilution water with nitrification inhibitor can be aged for a week before use (SM p528, #5b).
 Dilution water without inhibitor should not be aged.
- 10. Have any of the samples been frozen? "

 If yes, are they seeded?

 Samples that have been frozen should be seeded (SSM p38).
- 11. Is the pH of all samples between 6.5 and 7.5? OK

 If no, is the sample pH adjusted?

The sample pH should be adjusted to between 6.5 and 7.5 with 1N NaOH or 1N H2SO4 if 6.5 > pH >7.5 if caustic alkalinity or acidity is present (SE p529, #5e1: SSM p37).

High pH from lagoons is usually not caustic. Place the sample in the dark to warm up, then check the pH to see if adjustment is necessary.

If the sample pH is adjusted, is the sample seeded?

The sample should be seeded to assure adequate microbial activity if the pH is adjusted (SM p528, #5d).

12. Have any of the samples been chlorinated or ozonated? **

If chlorinated are they checked for chlorine residual and dechlorinated as necessary?

How are they dechlorinated?

Samples should be dechlorinated with sodium sulfite (SM p529, #5e2: SSM p38), but dechlorination with sodium thiosulfate is common practice. Sodium thiosufate dechlorination is probably acceptable if the chlorine residual is < 1-2 mg/L.

If chlorinated or ozonated, is the sample seeded?

The sample should be seeded if it was disinfected (SM p528, #5d&5e2: SSM p38).

- 13. Do any samples have a toxic effect on the BOD test? To Specific modifications are probably necessary (SM p528, #5d: SSM p37).
- 14. How are DO concentrations measured? YSI

 If with a meter, how is the meter calibrated? 21 2x's/mill Winkler
 Air calibration is adequate. Use of a barometer to determine
 saturation is desirable, although not manditory. Checks using the Winkler
 method of samples found to have a low DO are desirable to assure that the
 meter is accurate over the range of measurements being made.

How frequently is the meter calibrated? Gefore use.

Is a dilution water blank run? yes
A dilution water blank should always be run for quality assurance (SM p527, #5b: SSM p40, #3).

What is the usual initial DO of the blank? 8.6

The DO should be near saturation; 7.8 mg/L @ 4000 ft, 9.0 mg/L @ sea level (SM p528, #5b). The distilled or deionized water used to make the dilution water may be aged in the dark at ~20 degrees C for a week with a cotton plug in the opening prior to use if low DO or excess blank depletion is a problem.

Suggest store in dark

- The depletion should be 0.2 mg/L or less. If the depletion is greater, the cause should be found (SM p527-8, #5b: SSM p41, #6).
- 16. How many dilutions are made for each sample? Z

 At least two dilutions are recommended. The dilutions should be far enough apart to provide a good extended range (SM p530, #5f: SSM p41).
- 17. Are dilutions made by the liter method or in the bottle? Bither method is acceptable (SM p530, #5f).
- 18. How many bottles are made at each dilution? 2

 How many bottles are incubated at each dilution? /

 When determining the DO using a meter only one bottle is necessary.

 The DO is measured, then the bottle is sealed and incubated (SM p530, #5f2)

 When determining the DO using the Winkler method two bottles are
 necessary. The initial DO is found of one bottle and the other bottle is
 sealed and incubated (Ibid.).

- 19. Is the initial DO of each dilution measured? Yes
 What is the typical initial DO? ~8.5
 The initial DO of each dilution should be measured. It should approximate maturation (see \$14).
- What is considered the minimum acceptable DO depletion after 5 days? or What is the minimum DO that should be remaining after 5 days? The depletion should be at least 2.0 mg/L and at least 1.0 mg/L should be left after 5 days (SM p531, #6: SSM p41).
- 21. Are any samples seeded? To Which?
 What is the seed source?

Primary effluent or settled raw wastewater is the preferred seed. Secondary treated sources can be used for inhibited tests (SM p528, #5d:

SSM p41).

How much seed is added to each sample?

Adequate seed should be used to cause a BOD uptake of 0.6 to 1.0 mg/L due to seed in the sample (SM p529, #5d).

How is the BOD of the seed determined?

Dilutions should be set up to allow the BOD of the seed to be determined just as the BOD of a sample is determined. This is called the seed control (SM p529, #5d: SSM p41).

What is the incubator temperature? 2/
The incubator should be kept at 20 +/- 1 degree C (SM p531, #5i: SSM p40, #3).

How is incubator temperature monitored? A thermometer in a water bath should be kept in the incubator on the same shelf as the BODs are incubated.

How frequently is the temperature checked? weekly

The temperature should be checked daily during the test. A
temperature log on the incubator door is recommended.

How often must the incubator temperature be adjusted? weekly
Adjustment should be infrequent. If frequent adjustments (every 2 weeks or more often) are required the incubator should be repaired.

Is the incubator dark during the test period? OK Assure the switch that turns off the interior light is functioning.

23. Are water seals maintained on the bottles during incubation? Yes Water seals should be maintained to prevent leakage of air during the incubation period (SM p531, #5i: SSM p40, #4).

24. Is the method of calculation correct? OK

Check to assure that no correction is made for any DO depletion in the blank and that the seed correction is made using seed control data.

Standard Method calculations are (SM p531, #6):

for unseeded samples;

for seeded samples;

BOD
$$(mg/L) = \frac{(D1 - D2) - (B1 - B2)f}{P}$$

Where: D1 = D0 of the diluted sample before incubation (mg/L)

D2 = D0 of diluted sample after incubation period (mg/L)

P = decimal volumetric fraction of sample used B1 = D0 of seed control before incubation (mg/L) B2 = D0 of seed control after incubation (mg/L)

Total Suspended Solids Test Review

Preparation

- 1. What reference is used for the TSS test? Simplified Std Mthds
- 2. What type of filter paper is used?
 Std. Mthds. approved papers are: Whatman 934AH (Reeve Angel), Gelman A/E, and Millipore AP-40 (SM p95, footnote: SSM p23)
- The temperature should be 103-105 degrees C (SM p96, #3a: SSM p23).
- 4. Are any volatile suspended solids tests run? yes ~~4255
 If yes--What is the suffle furnance temperature? 500-550
 The temperature should be 550+/- 50 degrees C (SM p98, #3: SSM p23).
- 5. What type of filtering apparatus is used?

 Gooch crucibles or a bembrane filter apparatus should be used (SM p95, #2b: SSM p23).
- 6 How are the filters pre-washed prior to use? should do The filters should be rinsed 3 times with distilled water (SM p23, #2: SSM p23, #2).

Are the rough or smooth sides of the filters up? yes
The rough side should be up (SM p96, #3a: SSM p23, #1)

How long are the filters dried? Dac how.

The filters should be dried for at least one hour in the oven. An additional 20 minutes of drying in the furnance is required if volatile solids are to be tested (Ibid).

How are the filters stored prior to use?
The filters should be stored in a dessicator (Ibid).

7. How is the effectiveness of the descicant checked? **
All or a portion of the descicant should have an indicator to assure effectiveness.

Test Procedure

8) In what is the test volume of sample measured? Ef 300-600 cylinder
The sample should be measured with a wide tipped pipette or a graduated cylinder. Use graduation, on filter apparatus

> should

9. Is the filter seated with distilled water? OK

The filter should be seated with distilled water prior to the test to avoid leakage along the filter sides (SM p97, #3c).

- The entire measured volume always filtered? namember
 The entire volume should always be filtered to allow the measuring vessel to be properly rinsed (SM p87, #3c: SSM p24, #4).
- 11. What are the average and minimum volumes filtered?
 Volume

Minimum Average

Influent Effluent

12. How long down it take to filter the samples?

Time

Influent Effluent

13. How long is filtering attempted before deciding that a filter is clogged? 5 minutes

Prolonged filtering can cause high results due to dissolved solids being caught in the filter (SM p96, #1b). We usually advise a five minute filtering maximum.

- 14. What do you do when a filter becomes clogged? start over The filter should be discarded and a smaller volume of sample should be used with a new filter.
- 15. How are the filter funnel and measuring device rinsed onto the filter following sample addition? OK

Ringe 3x's with approximately 10 mLs of distilled water each time (??).

- 16. How long is the sample dried? ***

 The sample should be dried at least one hour for the TSS test and 20 minutes for the volatile test (SM p97, #3c; p98, #3: SSM p24, #4).

 Excessive drying times (such as overnight) should be avoided.
- 17. Is the filter thoroughly cooled in a dessicator prior to weighing? of The filter must be cooled to avoid drafts due to thermal differences when weighing (SM p97, #3c: SSM p97 #3c).
- 18) How frequently is the drying cycle repeated to assure constant filter weight has ben reached (weight loss <0.5 mg or 4%, whichever is less: SM p97, #3c)? ***seg****L

We recommend that this be done at least once every 2 months.

19. Do calculations appear reasonable? OK Standard Methods calculation (SM p97, #3c).

where: A= weight of filter + dried residue (mg)
B= weight of filter (mg)

Fecal Coliform Test Review

1. Is the Membrane Filtration (MF) or Most Probable Number (MFN) technique used?

This review is for the MF technique.

- 2. Are sterile techniques used? OK
- 3. How is equipment sterilizated? OK

 Items should be either purchased sterilized or be sterilized. Steam sterilization, 121 degrees C for 15 to 30 minutes (15 psi); dry heat, 1-2 hours at 170 degrees C; or ultraviolet light for 2-3 minutes can be used. See Standard Methods for instructions for specific items (SSM p67-68).
- 4. How is sterilization preserved prior to item use? CK Wrapping the items in kraft paper or foil before they are sterilized protects them from contamination (Ibid.).
- 5. How are the following items sterilized?

Purchased Sterile Sterilized at Plant

Collection bottles Phosphate buffer Media Media pads Petri dishes Filter apparatus Filters Pipettes Messuring cylinder Used petri dishes

- 6. How are samples dechlorinated at the time of collection? OK Sodium thiosulfate (1 mL of 1% solution per 120 mLs (4 ounces) of sample to be collected) should be added to the collection bottle prior to sterilization (SM p856, #2: SSM p68, sampling).
- 7. Is phosphate buffer made specifically for this test? yes
 Use phosphate buffer made specifically for this test. The phosphate
 buffer for the BOD test should not be used for the coliform test (SM p855, #12: SSM p66).
- 8. What kind of media is used? M-FC media should be used (SM p896, SSM p66).
- 9. Is the media mixed or purchased in ampoules?

 Ampoules are less expensive and more convient for under 50 tests per day (SSM p65, bottom).
- 10. How is the media stored?

 The media should be refrigerated (SM p897, #1a: SSM p66, #5).

- 11. How long is the media stored? Finths

 Mixed media ahould be stored no longer than 96 hours (SM p897, #1a:

 SSM p66, #5). Ampoules will usually keep from 3-6 months -- read ampoule directions for specific instructions.
- 12. Is the work bench disinfected before and after testing? ok This is a necessary sanitazation procedure (SM p831, #1f).
- 13. Are forceps dipped in alcohol and flamed prior to use? **

 Dipping in alcohol and flaming are necessary to sterilize the forceps (SM p889, #1: SSM p73, #4).
- 14. Is sample bottle thoroughly shaken before the test volume is removed? The sample should be mixed thoroughly (SSM p73, #5). y^{q_5}
- 15. Are special procedures followed when less than 20 mLs of sample is to be filtered?

 50 f 100 mLs

 10-30 mLs of sterile phosphate buffer should be put on the filter. The

10-30 mLs of sterile phosphate buffer should be put on the filter. The sample should be put into the buffer water and swirled, then the vacuum should be turned on. More even organism distribution is attained using this technique (SM p890, #5a: SSM P73, #5).

16. Are special procedures followed when less than 1 mL of sample is to be filtered?

Sample dilution is necessary prior to filtration when <1 mL is to be tested (SM p864, #2c: SSM p69).

17. Is the filter apparatus rinsed with phosphate buffer after sample filtration? o^{κ}

Three 20-30 mL rinses of the filter apparatus are recommended (SM p891, #5b: SSM p75, #7).

- 18. How soon after sample filtration is incubation begun? immediately Incubation should begin within 20-30 minutes (SM p897, #2d: SSM p77, #10 note).
- 19. What is the incubation temperature? OK 44.5 +/- 0.2 degrees C (SM p897, #2d: SSM p75, #9).
- 20. How long are the filters incubated? 0
 24 +/- 2 hours (Ibid.).
- 21. How soon after incubation is complete are the plate counts made? OK The counts should be made within 20 minutes after incubation is complete to avoid colony color fading (SSM p77, FC).
- 22. What color colonies are counted? OK

 The fecal coliform colonies vary from light to dark blue (SM p897, #2e:
 SSM p78).
- 23. What magnification is used for counting? 0
 10-15 power magnification is recommended (SM p898, #2e: SSM p78).

- 24. How many colonies blue colonies are usually counted on a plate? OK Valid plate counts are between 20 and 60 colonies (SM p897, #2a: SSM p78).
- 25. How many total colonies are usually on a plate? ok The plate should have <200 total colonies to avoid inhabition due to crowding (SM p893, #6a: SSM p63, top).
- 26. When calculating results, how are plates with <20 or >60 colonies considered when plates exist with between 20 and 60 colonies? **

 In this case the plates with <20 or >60 colonies should not be used for calculations (SM p898, #3: SSM p78, C&R).
- 27. When calculating results how are results expressed if all plates have < 20 or > 60 colonies? **

 Results should be identified as estimated.

 The exception is when water quality is good and <20 colonies grow. In
- The exception is when water quality is good and <20 colonies grow. In this case the lower limit can be ignored (SM p893, #6a: SSM p78, C&R). 28. How are results calculated? OK
- Standard Methods procedure is (SM p893, #6a: SSM p79):

of fecal coliform colonies counted
Fecal coliforms/100 mL = ------ X 100

sample size (mL)

Laboratory Procedure Review Sheet

Discharger: Sxayus/mie STP

Date: 9/6

Discharger representative: Desn Collins

Ecology reviewer: Heffner

Instructions

Questionnaire for use reviewing laboratory procedures. Circled numbers indicate work is needed in that area to bring procedures into compliance with approved techniques. References are sited to help give guidance for making improvements. References sited include:

Ecology - Department of Ecology Laboratory User's Manual, December 8, 1986.

SM - APHA-AWWA-WPCF, Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

SSM = WPCF, Simplified Laboratory Procedures for Wastewater Examination, 3rd ed., 1985.

Sample Collection Review

- 1. Are grab, hand composite, or <u>automatic</u> composite samples collected for influent and effluent BOD and TSS analysis?
- 2. If automatic compositor, what type of compositor is used? /500

The compositor should have pre and post-purge cycles unless it is a flow through type. Check if you are unfamiliar with the type being used

- 3. Are composite samples collected based or time or flow?
- 4. What is the usual day(s) of sample collection? every zweeks
- 5. What time does sample collection usually begin? start Tues off Wed
- 6. How long does sample collection last? 24 hours
- 7. How often are subsamples that make up the composite collected? \cdot 1/2 hour
- 8. What volume is each subsample? 2200 mls

- 9. What is the final volume of sample collected? $\approx 2\frac{1}{2} g^2$
- 10. Is the composite cooled during collection? ice not room for much
- 11. To what temperature? 20.6 order smaller container

 The sample should be maintained at approximately 4 degrees C (SM,
- 12. How is the sample cooled? /ce

p41, #5b: SSM, p2).

Mechanical refrigeration or ice are acceptable. Blue ice or similar products are often inadequate.

- (13) How often is the temperature measured? did Lodey

 The temperature should be checked at least monthly to assure adequate cooling.
- 14. Are the sampling locations representative? oK
- 15. Are any return lines located upstream of the influent sampling location? none

This should be avoided whenever possible.

16. How is the sample mixed prior to withdrawal of a subsample for analysis? \mathcal{EK}

The sample should be thoroughly mixed.

17. How is the subsample stored prior to analysis? test right awy

The sample should be refrigerated (4 degrees C) until about 1 hour before analysis, at which time it is allowed to warm to room temperature.

18. What is the cleaning frequency of the collection jugs? \mathcal{O}

The jugs should be thoroughly rinsed after each sample is complete and occasionally be washed with a non-phosphate detergent.

How often are the sampler lines cleaned? new - should consider every

6 or eight months due to low frequency
Rinsing lines with a chlorine solution every three months or more of sampling often where necessary is suggested.

pH Test Review

1. How is the pH measured? Orion

A meter should be used. Use of paper or a colorimetric test is inadequate and those procedures are not listed in Standard Methods (SM, p429).

2. How often is the meter calibrated? It week - keep in 7

The meter should be calibrated every day it is used.

3. What buffers are used for calibration? pH 75'10

Two buffers bracketing the pH of the sample being tested should be used.

If the meter can only be calibrated with one buffer, the buffer closest in pH to the sample should be used. A second buffer, which brackets the pH of the sample should be used as a check. If the meter cannot accurately determine the pH of the second buffer, the meter should be repaired.

BOD Test Review

1. What reference is used for the BOD test? oK Standard Methods or the Ecology handout should be used.

2. How often are BODs run? every zweeks

The minimum frequency is specified in the permit.

3. How long after sample collection is the test begun? night and

The test should begin within 24 hours of composite sample completion (Ecology Lab Users Manual, p42). Starting the test as soon after samples are complete is desirable.

- 4. Is distilled or deionized water used for preparing dilution water?
- 5. Is the distilled water made with a copper free still? purchase

 Copper stills can leave a copper residual in the water which can be toxic to the test (SSM, p36).
- 6. Are any nitrification inhibitors used in the test? 30 What?

2-chloro-6(trichloro methyl) pyridine or Hach Nitrification Inhibitor 2533 may be used only if carbonaceous BODs are being determined (SM, p527, #4g: SSM, p37).

Laboratory Procedure Review Sheet Page 4

7. Are the four nutrient buffers of powder pillows used to make dilution water? 600 chemical

If the nutrients are used, how much buffer per liter of dilution water are added?

1 mL per liter should be added (SM, p527, #5a: SSM, p37).

8. How often is the dilution water prepared? for test

Dilution water should be made for each set of BODs run.

9. Is the dilution water aged prior to use? *w

Dilution water with nitrification inhibitor can be aged for a week before use (SM, p528, #5b).

Dilution water without inhibitor should not be aged.

10. Have any of the samples been frozen? never

If yes, are they seeded?

Samples that have been frozen should be seeded (SSM, p38).

(11.) Is the pH of all samples between 6.5 and 7.5? check

If no, is the sample pH adjusted?

The sample pH should be adjusted to between 6.5 and 7.5 with 1N NaOH or 1N H2SO4 if 6.5 > pH >7.5 if caustic alkalinity or acidity is present (SM, p529, #5el: SSM, p37).

High pH from lagoons is usually not caustic. Place the sample in the dark to warm up, then check the pH to see if adjustment is necessary.

If the sample pH is adjusted, is the sample seeded?

The sample should be seeded to assure adequate microbial activity if the pH is adjusted (SM, p528, #5d).

(12.) Have any of the samples been chlorinated or ozonated?

If chlorinated are they checked for chlorine residual and dechlorinated as necessary? needs to check -12lans to w/ mike Miens

How are they dechlorinated?

Samples should be dechlorinated with sodium sulfite (SM, p529, #5e2: SSM p38), but dechlorination with sodium thiosulfate is common practice. Sodium thiosufate dechlorination is probably acceptable if the chlorine residual is < 1-2 mg/L.

If chlorinated or ozonated, is the sample seeded?

The sample should be seeded if it was disinfected (SM, p528, #5d&5e2: SSM, p38).

13. Do any samples have a toxic effect on the BOD test?

Specific modifications are probably necessary (SM, p528, #5d: SSM, p37).

14. How are DO concentrations measured? YSI meler

If with a meter, how is the meter calibrated? 2,

Air calibration is adequate. Use of a barometer to determine saturation is desirable, although not mandatory. Checks using the Winkler method of samples found to have a low DO are desirable to assure that the meter is accurate over the range of measurements being made.

How frequently is the meter calibrated? Desa before use

The meter should be calibrated before use.

15. Is a dilution water blank run? 3/w3/5

A dilution water blank should always be run for quality assurance (SM, p527, #5b: SSM, p40, #3).

What is the usual initial DO of the blank? 5-10

The DO should be near saturation; 7.8 mg/L @ 4000 ft, 9.0 mg/L @ sea level (SM, p528, \pm 5b). The distilled or deionized water used to make the dilution water may be aged in the dark at \sim 20 degrees C for a week with a cotton plug in the opening prior to use if low DO or excess blank depletion is a problem.

What is the usual 5 day blank depletion? ?

The depletion should be 0.2 mg/L or less. If the depletion is greater, the cause should be found (SM, p527-8, #5b: SSM, p41, #6).

16. How many dilutions are made for each sample? 2 dilutions

At least two dilutions are recommended. The dilutions should be far enough apart to provide a good extended range (SM, p530, #5f: SSM, p41).

- 17. Are dilutions made by the liter method or in the bottle? Either method is acceptable (SM, p530, #5f).
- 18. How many bottles are made at each dilution? ≥

How many bottles are incubated at each dilution? /

When determining the DO using a meter only one bottle is necessary. The DO is measured, then the bottle is sealed and incubated (SM. p530, #5f2).

When determining the DO using the Winkler method two bottles are necessary. The initial DO is found of one bottle and the other bottle is sealed and incubated (Ibid.).

19. Is the initial DO of each dilution measured? yes

What is the typical initial DO? reriable

The initial DO of each dilution should be measured. It should approximate saturation (see #14).

20. What is considered the minimum acceptable DO depletion after five usually whin range

What is the minimum DO that should be remaining after five days?

The depletion should be at least 2.0 mg/L and at least 1.0 mg/L should be left after five days (SM, p531, #6: SSM, p41).

Are any samples seeded? 70 - should do prior to lost 5 months - i'sn't sure how to essluent grab samples Which?

effluent grab samples poter to chlorination

What is the seed source?

Primary effluent or settled raw wastewater is the preferred seed. Secondary treated sources can be used for inhibited tests (SM, p528, #5d: SSM, p41).

How much seed is added to each sample?

Adequate seed should be used to cause a BOD uptake of 0.6 to 1.0 mg/L due to seed in the sample (SM, p529, #5d).

How is the BOD of the seed determined?

Dilutions should be set up to allow the BOD of the seed to be determined just as the BOD of a sample is determined. This is called the seed control (SM, p529, #5d: SSM, p41).

(22). What is the incubator temperature? 22 . -

The incubator should be kept at 20 \pm 1 degree C (SM, p531, #5i: SSM, p40, #3).

How is incubator temperature monitored? - incubator can't keep in cool

A thermometer in a water bath should be kept in the incubator on the same shelf as the BODs are incubated.

How frequently is the temperature checked? Should keep log

The temperature should be checked daily during the test. A temperature log on the incubator door is recommended.

How often must the incubator temperature be adjusted?

Adjustment should be infrequent. If frequent adjustments (every two weeks or more often) are required the incubator should be repaired.

Is the incubator dark during the test period?

Assure the switch that turns off the interior light is functioning.

23. Are water seals maintained on the bottles during incubation? $\circ \kappa$

Water seals should be maintained to prevent leakage of air during the incubation period (SM, p531, #5i: SSM, p40, #4).

24. Is the method of calculation correct?

Check to assure that no correction is made for any DO depletion in the blank and that the seed correction is made using seed control data.

Standard Method calculations are (SM, p531, #6):

for unseeded samples;

for seeded samples;

Where:

D1 - D0 of the diluted sample before incubation (mg/L)

D2 - DO of diluted sample after incubation period (mg/L)

P - decimal volumetric fraction of sample used

B1 - D0 of seed control before incubation (mg/L)

B2 = DO of seed control after incubation (mg/L)

f = -----amount of seed in bottle D1 (mL)
amount of seed in bottle B1 (mL)

Total Suspended Solids Test Review

Preparation

- 1. What reference is used for the TSS test? 1976 Simplified Mthds
- 2. What type of filter paper is used?

Std Mthds approved papers are: Whatman 934AH (Reeve Angel), Gelman A/E, and Millipore AP-40 (SM, p95, footnote: SSM, p23)

- 3. What is the drying oven temperature? 101
 The temperature should be 103-105 degrees C (SM, p96, #3a: SSM, p23).
 - 4. Are any volatile suspended solids tests run? 70

 If yes, what is the muffle furnace temperature?

 The temperature should be 550+/- 50 degrees C (SM, p98, #3: SSM, p23).
 - 5. What type of filtering apparatus is used?

 Gooch crucibles or membrane filter apparatus should be used (SM, p95, #2b: SSM, p23).
- (G). How are the filters pre-washed prior to use? no fillers for before use

The filters should be rinsed three times with distilled water (SM, p23, ± 2 : SSM, p23, ± 2).

Are the rough or smooth sides of the filters up?

The rough side should be up (SM, p96, #3a: SSM, p23, #1)

How long are the filters dried?

The filters should be dried for at least one hour in the oven. An additional 20 minutes of drying in the furnace is required if volatile solids are to be tested (Ibid).

How are the filters stored prior to use?

The filters should be stored in a desiccator (Ibid).

7. How is the effectiveness of the desiccant checked? indicates

All or a portion of the desiccant should have an indicator to assure effectiveness.

Test Procedure

8. In what is the test volume of sample measured?

The sample should be measured with a wide tipped pipette or a graduated cylinder.

9. Is the filter seated with distilled water? should

The filter should be seated with distilled water prior to the test to avoid leakage along the filter sides (SM, p97, #3c).

10. Is the entire measured volume always filtered? OK

The entire volume should always be filtered to allow the measuring vessel to be properly rinsed (SM, p97, #3c: SSM, p24, #4).

11. What are the average and minimum volumes filtered?

Volume

Average /*f €f Minimum

40-60

Influent Effluent

12. How long does it take to filter the samples? OK

Time

Influent

Effluent

How long is filtering attempted before deciding that a filter is clogged? not problem

Prolonged filtering can cause high results due to dissolved solids being caught in the filter (SM, p96, #1b). We usually advise a five minute filtering maximum.

14. What do you do when a filter becomes clogged?

The filter should be discarded and a smaller volume of sample should be used with a new filter.

How are the filter funnel and measuring device rinsed onto the filter following sample addition? OK

120

juboratory Procedure Review Sheet juge 10

Rinse 3x's with approximately 10 mLs of distilled water each time (? ?).

15. How long is the sample dried? I hour

The sample should be dried at least one hour for the TSS test and 20 minutes for the volatile test (SM, p97, #3c; p98, #3: SSM, p24, #4). Excessive drying times (such as overnight) should be avoided.

Is the filter thoroughly cooled in a desiccator prior to weighing? $\frac{1}{2}$ have

The filter must be cooled to avoid drafts due to thermal differences when weighing (SM, p97, #3c: SSM, p97 #3c).

18. How frequently is the drying cycle repeated to assure constant filter weight has been reached (weight loss <0.5 mg or 4 percent, whichever is less: SM, p97, #3c)?

We recommend that this be done at least once every two months.

19. Do calculations appear reasonable?

Standard Methods calculation (SM, p97, #3c).

where: A- weight of filter + dried residue (mg)
B- weight of filter (mg)

Fecal Coliform Test Review

1. Is the Membrane Filtration (MF) or Most Probable Number (MPN) technique used?

This review is for the MF technique.

- 2. Are sterile techniques used?
- 3. How is equipment sterilized? Purchase

Items should be either purchased sterilized or be sterilized. Steam sterilization, 121 degrees C for 15 to 30 minutes (15 psi); dry heat, 1-2 hours at 170 degrees C; or ultraviolet light for 2-3 minutes can be used. See Standard Methods for instructions for specific items (SSM, p67-68).

- 12. Is the work bench disinfected before and after testing?
 This is a necessary sanitization procedure (SM, p831, #lf).
- 13. Are forceps dipped in alcohol and flamed prior to use?

 Dipping in alcohol and flaming are necessary to sterilize the forceps (SM, p889, #1: SSM p73, #4).
- 14. Is sample bottle thoroughly shaken before the test volume is removed?

The sample should be mixed thoroughly (SSM, p73, #5).

15. Are special procedures followed when less than 20 mLs of sample is to be filtered?

10-30 mLs of sterile phosphate buffer should be put on the filter. The sample should be put into the buffer water and swirled, then the vacuum should be turned on. More even organism distribution is attained using this technique (SM, p890, #5a: SSM P73, #5).

16. Are special procedures followed when less than 1 mL of sample is to be filtered?

Sample dilution is necessary prior to filtration when <1 mL is to be tested (SM, p864, #2c: SSM p69).

17. Is the filter apparatus rinsed with phosphate buffer after sample filtration?

Three 20-30 mL rinses of the filter apparatus are recommended (SM, p891, #5b: SSM, p75, #7).

18. How soon after sample filtration is incubation begun?

Incubation should begin within 20-30 minutes (SM, p897, #2d: SSM p77, #10 note).

19. What is the incubation temperature?

44.5 +/- 0.2 degrees C (SM, p897, #2d: SSM, p75, #9).

20. How long are the filters incubated?

24 +/- 2 hours (Ibid.).

21. How soon after incubation is complete are the plate counts made?

The counts should be made within 20 minutes after incubation is complete to avoid colony color fading (SSM, p77, FC).

22. What color colonies are counted?

The fecal coliform colonies vary from light to dark blue (SM, p897, #2e: SSM, p78).

23. What magnification is used for counting?

10-15 power magnification is recommended (SM, p898, #2e: SSM, p78).

- 24. How many colonies blue colonies are usually counted on a plate?
 - Valid plate counts are between 20 and 60 colonies (SM, p897, #2a: SSM, p78).
- 25. How many total colonies are usually on a plate?

The plate should have <200 total colonies to avoid inhibition due to crowding (SM, p893, #6a: SSM, p63, top).

26. When calculating results, how are plates with <20 or >60 colonies considered when plates exist with between 20 and 60 colonies?

In this case the plates with <20 or >60 colonies should not be used for calculations (SM, p898, #3: SSM, p78, C&R).

27. When calculating results how are results expressed if all plates have < 20 or > 60 colonies?

Results should be identified as estimated.

The exception is when water quality is good and <20 colonies grow. In this case the lower limit can be ignored (SM, p893, #6a: SSM, p78, C&R).

28. How are results calculated?

Standard Methods procedure is (SM, p893, #6a: SSM, p79):

of fecal coliform colonies counted Fecal coliforms/100 mL \approx ----- X 100 sample size (mL)

Laboratory Procedure Review Sheet

Discharger: Dovall

Date: 9/6/89

Discharger representative: John Light - started operating 3-4 weeks ago

Ecology reviewer: Heffner

Instructions

Questionnaire for use reviewing laboratory procedures. Circled numbers indicate work is needed in that area to bring procedures into compliance with approved techniques. References are sited to help give guidance for making improvements. References sited include:

Ecology - Department of Ecology Laboratory User's Manual, December 8, 1986.

SM - APHA-AWWA-WPCF, Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

SSM - WPCF, Simplified Laboratory Procedures for Wastewater Examination, 3rd ed., 1985.

Sample Collection Review

- 1. Are grab, hand composite, or automatic composite samples collected for influent and effluent BOD and TSS analysis?
- 2. If automatic compositor, what type of compositor is used? Manning (portable)

 The compositor should have pre and post-purge cycles unless it is a

flow through type. Check if you are unfamiliar with the type being used.

- 3. Are composite samples collected based on time or flow?
- 4. What is the usual day(s) of sample collection?
- 5. What time does sample collection usually begin? start Tues and Wad
- 6. How long does sample collection last? Z4
- 7. How often are subsamples that make up the composite collected? 1/4r
- 8. What volume is each subsample? 2300 25

- 9. What is the final volume of sample collected? 3-5 32 //ons
- 10. Is the composite cooled during collection?
- (11) To what temperature? should check

The sample should be maintained at approximately 4 degrees C (SM, p41, #5b: SSM, p2).

12. How is the sample cooled? ice

Mechanical refrigeration or ice are acceptable. Blue ice or similar products are often inadequate.

13. How often is the temperature measured? check

The temperature should be checked at least monthly to assure adequate cooling.

- 14. Are the sampling locations representative? OK
- 15. Are any return lines located upstream of the influent sampling location? 70

This should be avoided whenever possible.

16. How is the sample mixed prior to withdrawal of a subsample for analysis? \mathcal{OK}

The sample should be thoroughly mixed.

17. How is the subsample stored prior to analysis? set-up right away

The sample should be refrigerated (4 degrees C) until about 1 hour before analysis, at which time it is allowed to warm to room temperature.

18. What is the cleaning frequency of the collection jugs? alconox

The jugs should be thoroughly rinsed after each sample is complete and occasionally be washed with a non-phosphate detergent.

19. How often are the sampler lines cleaned? OK

Rinsing lines with a chlorine solution every three months or more often where necessary is suggested.

pH Test Review

1. How is the pH measured? meder

A meter should be used. Use of paper or a colorimetric test is inadequate and those procedures are not listed in Standard Methods (SM, p429).

- 2.) How often is the meter calibrated? every 2 weeks suggest more frequent.

 The meter should be calibrated every day it is used.
 - 3. What buffers are used for calibration? 4:7 suggest to before ment time.

 Two buffers bracketing the pH of the sample being tested should be used.

If the meter can only be calibrated with one buffer, the buffer closest in pH to the sample should be used. A second buffer, which brackets the pH of the sample should be used as a check. If the meter cannot accurately determine the pH of the second buffer, the meter should be repaired.

BOD Test Review

- 1. What reference is used for the BOD test? Eco handouts Std Mthds
 Standard Methods or the Ecology handout should be used.
- 2. How often are BODs run? 1/ wk

 The minimum frequency is specified in the permit.
- 3. How long after sample collection is the test begun? * 'mmediately

 The test should begin within 24 hours of composite sample
 completion (Ecology Lab Users Manual, p42). Starting the test as
 soon after samples are complete is desirable.
- 4. Is distilled or deionized water used for preparing dilution water?

 purchase distilled water
- 5. Is the distilled water made with a copper free still?

Copper stills can leave a copper residual in the water which can be toxic to the test (SSM, p36).

6. Are any nitrification inhibitors used in the test? > 6 What?

2-chloro-6(trichloro methyl) pyridine or Hach Nitrification Inhibitor 2533 may be used only if carbonaceous BODs are being

Laboratory Procedure Review Sheet Page 4

7. Are the four nutrient buffers of powder pillows used to make dilution water? purchased

If the nutrients are used, how much buffer per liter of dilution water are added?

1 mL per liter should be added (SM, p527, #5a: SSM, p37).

8. How often is the dilution water prepared? OK

Dilution water should be made for each set of BODs run.

9. Is the dilution water aged prior to use? 10

Dilution water with nitrification inhibitor can be aged for a week before use (SM, p528, #5b).

Dilution water without inhibitor should not be aged.

10. Have any of the samples been frozen? **o

If yes, are they seeded?

Samples that have been frozen should be seeded (SSM, p38).

11. Is the pH of all samples between 6.5 and 7.5? OK

If no, is the sample pH adjusted?

The sample pH should be adjusted to between 6.5 and 7.5 with lN NaOH or lN H2SO4 if 6.5 > pH > 7.5 if caustic alkalinity or acidity is present (SM, p529, \neq 5el: SSM, p37).

High pH from lagoons is usually not caustic. Place the sample in the dark to warm up, then check the pH to see if adjustment is necessary.

If the sample pH is adjusted, is the sample seeded?

The sample should be seeded to assure adequate microbial activity if the pH is adjusted (SM, p528, \pm 5d).

12. Have any of the samples been chlorinated or ozonated? final effluent

If chlorinated are they checked for chlorine residual and dechlorinated as necessary? y^{e_5}

How are they dechlorinated? no residual in comp.

Samples should be dechlorinated with sodium sulfite (SM, p529, #5e2: SSM p38), but dechlorination with sodium thiosulfate is common practice. Sodium thiosufate dechlorination is probably acceptable if the chlorine residual is < 1-2 mg/L.

If chlorinated or ozonated, is the sample seeded? yes

The sample should be seeded if it was disinfected (SM, p528, #5d&5e2: SSM, p38).

- 13. Do any samples have a toxic effect on the BOD test? probably not Specific modifications are probably necessary (SM, p528, #5d: SSM, p37).
- 14. How are DO concentrations measured? winkler of PAO

If with a meter, how is the meter calibrated?

Air calibration is adequate. Use of a barometer to determine saturation is desirable, although not mandatory. Checks using the Winkler method of samples found to have a low DO are desirable to assure that the meter is accurate over the range of measurements being made.

How frequently is the meter calibrated?

The meter should be calibrated before use.

15. Is a dilution water blank run? yes

A dilution water blank should always be run for quality assurance (SM, p527, #5b: SSM, p40, #3).

What is the usual initial DO of the blank? ≈ 8.3

The DO should be near saturation; 7.8 mg/L @ 4000 ft, 9.0 mg/L @ sea level (SM, p528, \pm 5b). The distilled or deionized water used to make the dilution water may be aged in the dark at \sim 20 degrees C for a week with a cotton plug in the opening prior to use if low DO or excess blank depletion is a problem.

What is the usual 5 day blank depletion? 20.2

The depletion should be 0.2 mg/L or less. If the depletion is greater, the cause should be found (SM, p527-8, \pm 5b: SSM, p41, \pm 6).

16. How many dilutions are made for each sample? 2

At least two dilutions are recommended. The dilutions should be far enough apart to provide a good extended range (SM, p530, =5f:

- 17. Are dilutions made by the liter method or in the bottle?

 Either method is acceptable (SM, p530, #5f).
- 18. How many bottles are made at each dilution? 3

How many bottles are incubated at each dilution? 2

When determining the DO using a meter only one bottle is necessary. The DO is measured, then the bottle is sealed and incubated (SM, p530, #5f2).

When determining the DO using the Winkler method two bottles are necessary. The initial DO is found of one bottle and the other bottle is sealed and incubated (Ibid.).

19. Is the initial DO of each dilution measured? yes

What is the typical initial DO? z 8-8.5

The initial DO of each dilution should be measured. It should approximate saturation (see #14).

(20.) What is considered the minimum acceptable DO depletion after five days?

What is the minimum DO that should be remaining after five days?

The depletion should be at least 2.0 mg/L and at least 1.0 mg/L should be left after five days (SM, p531, #6: SSM, p41).

21. Are anv samples seeded? yes

Which? inf - es

That is the seed source? unchlorizated secondary

Primary effluent or settled raw wastewater is the preferred seed. Secondary treated sources can be used for inhibited tests (SM, p528, =5d: SSM, p41).

How much seed is added to each sample? still experimenting

Adequate seed should be used to cause a BOD uptake of 0.6 to 1.0 mg/L due to seed in the sample (SM, p529, #5d).

How is the BOD of the seed determined? seed control

Dilutions should be set up to allow the BOD of the seed to be determined just as the BOD of a sample is determined. This is called the seed control (SM, p529, #5d: SSM, p41).

22. What is the incubator temperature? 20°

The incubator should be kept at 20 +/- 1 degree C (SM, p531, #5i: SSM, p40, #3).

How is incubator temperature monitored? thermometer

suggest

A thermometer in a water bath should be kept in the incubator on the same shelf as the BODs are incubated.

How frequently is the temperature checked? when put in when should check foul 2/50

The temperature should be checked daily during the test. A temperature log on the incubator door is recommended.

How often must the incubator temperature be adjusted? seldom

Adjustment should be infrequent. If frequent adjustments (every two weeks or more often) are required the incubator should be repaired.

Is the incubator dark during the test period? oK

Assure the switch that turns off the interior light is functioning.

23. Are water seals maintained on the bottles during incubation?

Water seals should be maintained to prevent leakage of air during the incubation period (SM, p531, #5i: SSM, p40, #4).

Is the method of calculation correct? - recheck seed correction calc

Check to assure that no correction is made for any DO depletion in the blank and that the seed correction is made using seed control data.

Standard Method calculations are (SM, p531, #6):

for unseeded samples;

for seeded samples;

Where:

D1 - D0 of the diluted sample before incubation (mg/L)

D2 = D0 of diluted sample after incubation period (mg/L)

P = decimal volumetric fraction of sample used

B1 = D0 of seed control before incubation (mg/L)

amount of seed in bottle D1 (mL)
f = ------amount of seed in bottle B1 (mL)

Total Suspended Solids Test Review

Preparation

- 1. What reference is used for the TSS test? Ecology & Std Mhds
- 2. What type of filter paper is used?

Std. Mthds. approved papers are: Whatman 934ÅH (Reeve Angel), Gelman A/E, and Millipore AP-40 (SM, p95, footnote: SSM, p23)

3. What is the drying oven temperature? 105

The temperature should be 103-105 degrees C (SM, p96, #3a: SSM, p23).

4. Are any volatile suspended solids tests run? MLSS

If yes, what is the muffle furnace temperature? :550

The temperature should be 550+/-50 degrees C (SM, p98, #3: SSM, p23).

5. What type of filtering apparatus is used?

Gooch crucibles or a membrane filter apparatus should be used (SM, p95, #2b: SSM, p23).

6. How are the filters pre-washed prior to use? OK

The filters should be rinsed three times with distilled water (SM, p23, =2: SSM, p23, =2).

Are the rough or smooth sides of the filters up? 6/

The rough side should be up (SM, p96, #3a: SSM, p23, #1)

How long are the filters dried? 3/ /r

The filters should be dried for at least one hour in the oven. An additional 20 minutes of drying in the furnace is required if volatile solids are to be tested (Ibid).

How are the filters stored prior to use? Lessicator

The filters should be stored in a desiccator (Ibid).

7. How is the effectiveness of the desiccant checked? indicator

All or a portion of the desiccant should have an indicator to assure effectiveness.

Test Procedure

8. In what is the test volume of sample measured? 50 mls - graduated cylinder

The sample should be measured with a wide tipped pipette or a graduated cylinder.

9. Is the filter seated with distilled water? oK

The filter should be seated with distilled water prior to the test to avoid leakage along the filter sides (SM, p97, #3c).

10. Is the entire measured volume always filtered? oK

The entire volume should always be filtered to allow the measuring vessel to be properly rinsed (SM, p97, \pm 3c: SSM, p24, \pm 4).

11. What are the average and minimum volumes filtered?

Volume

50 m65

Minimum Average

Influent Effluent

12. How long does it take to filter the samples? ~ 30 conds

Time

Influent Effluent

13. How long is filtering attempted before deciding that a filter is clogged? *** [19]

Prolonged filtering can cause high results due to dissolved solids being caught in the filter (SM, p96, \Rightarrow 1b). We usually advise a five minute filtering maximum.

14. What do you do when a filter becomes clogged? pilch

The filter should be discarded and a smaller volume of sample should be used with a new filter.

15. How are the filter funnel and measuring device rinsed onto the filter following sample addition? OK

Laboratory Procedure Review Sheet Page 10

Rinse 3x's with approximately 10 mLs of distilled water each time (? ?).

16. How long is the sample dried? / hr +

The sample should be dried at least one hour for the TSS test and 20 minutes for the volatile test (SM, p97, #3c; p98, #3: SSM, p24, #4). Excessive drying times (such as overnight) should be avoided.

- 17. Is the filter thoroughly cooled in a desiccator prior to weighing? OK

 The filter must be cooled to avoid drafts due to thermal differences when weighing (SM, p97, #3c: SSM, p97 #3c).
- 18. How frequently is the drying cycle repeated to assure constant filter weight has been reached (weight loss <0.5 mg or 4 percent, whichever is less: SM, p97, #3c)? does occassionally

We recommend that this be done at least once every two months.

19. Do calculations appear reasonable? OK

Standard Methods calculation (SM, p97, #3c).

where: A- weight of filter + dried residue (mg)
B- weight of filter (mg)

Fecal Coliform Test Review

1. Is the Membrane Filtration (MF) or Most Probable Number (MPN) technique used?

This review is for the MF technique.

- 2. Are sterile techniques used? OK
- 3. How is equipment sterilized? purchase or sulcelave

Items should be either purchased sterilized or be sterilized. Steam sterilization, 121 degrees C for 15 to 30 minutes (15 psi); dry heat. 1-2 hours at 170 degrees C; or ultraviolet light for 2-3 minutes can be used. See Standard Methods for instructions for specific items (SSM, p67-68).

€

- 4. How is sterilization preserved prior to item use? For (
 Wrapping the items in kraft paper or foil before they are sterilized protects them from contamination (Ibid.).
- 5. How are the following items sterilized?

Purchased Sterile Sterilized at Plant

Collection bottles
Phosphate buffer
Media
Media pads
Petri dishes
Filter apparatus
Filters
Pipettes
Measuring cylinder
Used petri dishes

- 6. How are samples dechlorinated at the time of collection? or will sale to larger bottle size.

 Sodium thiosulfate (1 mL of 1% solution per 120 mLs (4 ounces) of sample to be collected) should be added to the collection bottle prior to sterilization (SM p856, #2: SSM p68, sampling).
- 7. Is phosphate buffer made specifically for this test? yes

 Use phosphate buffer made specifically for this test. The phosphate buffer for the BOD test should not be used for the coliform test (SM, p855, #12: SSM p66).
- 8. What kind of media is used? OK
 M-FC media should be used (SM, p896, SSM p66).

11. How long is the media stored? OK

- 9. Is the media mixed or purchased in ampoules? purchase

 Ampoules are less expensive and more convenient for under 50 tests per day (SSM, p65, bottom).
- 10. How is the media stored? refrigerated

 The media should be refrigerated (SM, p897, #la: SSM p66, #5).
- Mixed media should be stored no longer than 96 hours (SM, p897, #1a: SSM, p66, #5). Ampoules will usually keep from three to six months -- read ampoule directions for specific instructions.

- 12. Is the work bench disinfected before and after testing? OK

 This is a necessary sanitization procedure (SM, p831, #lf).
- 13. Are forceps dipped in alcohol and flamed prior to use? ok

 Dipping in alcohol and flaming are necessary to sterilize the forceps (SM, p889, #1: SSM p73, #4).
- 14. Is sample bottle thoroughly shaken before the test volume is removed? $\circ \kappa$

The sample should be mixed thoroughly (SSM, p73, #5).

- 15. Are special procedures followed when less than 20 mLs of sample is to be filtered? OK slwars dilute to see mls before
 - 10-30 mLs of sterile phosphate buffer should be put on the filter. The sample should be put into the buffer water and swirled, then the vacuum should be turned on. More even organism distribution is attained using this technique (SM, p890, #5a: SSM P73, #5).
- 16. Are special procedures followed when less than 1 mL of sample is to be filtered?
 - Sample dilution is necessary prior to filtration when <1 mL is to be tested (SM, p864, #2c: SSM p69).
- 17. Is the filter apparatus rinsed with phosphate buffer after sample filtration? $\phi \kappa$
 - Three 20-30 mL rinses of the filter apparatus are recommended (SM, p891, #5b: SSM, p75, #7).
- 18. How soon after sample filtration is incubation begun?

 Incubation should begin within 20-30 minutes (SM, p897, #2d: SSM p77, #10 note).
- 19. What is the incubation temperature? **44.5**44.5 +/- 0.2 degrees C (SM, p897, #2d: SSM, p75, #9).
- 20. How long are the filters incubated? •

 24 +/- 2 hours (Ibid.).
- 21. How soon after incubation is complete are the plate counts made? OK

 The counts should be made within 20 minutes after incubation is complete to avoid colony color fading (SSM, p77, FC).

Laboratory Procedure Review Sheet Page 13

22. What color colonies are counted? blue

The fecal coliform colonies vary from light to dark blue (SM, p897, #2e: SSM, p78).

- 23. What magnification is used for counting? 🛪 o
 - 10-15 power magnification is recommended (SM, p898, #2e: SSM, p78).
- 24. How many colonies blue colonies are usually counted on a plate? ****

 Valid plate counts are between 20 and 60 colonies (SM, p897, #2a: SSM, p78).
- 25. How many total colonies are usually on a plate? eK

The plate should have <200 total colonies to avoid inhibition due to crowding (SM, p893, #6a: SSM, p63, top).

- 26. When calculating results, how are plates with <20 or >60 colonies considered when plates exist with between 20 and 60 colonies?
 - In this case the plates with <20 or >60 colonies should not be used for calculations (SM, p898, ± 3 : SSM, p78, C&R).
- 27. When calculating results how are results expressed if all plates have < 20 or > 60 colonies? $\ell\kappa$

Results should be identified as estimated.

The exception is when water quality is good and <20 colonies grow. In this case the lower limit can be ignored (SM, p893, #6a: SSM, p78, C&R).

28. How are results calculated? OK

Standard Methods procedure is (SM, p893, =6a: SSM, p79):

of fecal coliform colonies counted

Fecal coliforms/100 mL = ----- X 100

sample size (mL)